Posted in Uncategorized on June 30, 2011 by saiigain

Acheter

Fanon : Un penseur engagé de la décolonisation

Posted in Philosophy, Popular Tags, Roman on April 20, 2010 by saiigain

                                               La Revolution à la Frantz Fanon :

                                                 Hommage à un Esprit éclairé

                                                                      

Rares sont les grands hommes qui ne laissent de traces indélébiles sur leur chemin. De ces grands Hommes qui ont forgé l’imaginaire sociologique et historique de notre époque contemporaine, certains se sont illustrés à bien des égards par leurs habilités exceptionnelles de prospection et de projections dans le temps. De ces grands hommes d’ici et d’ailleurs, un Homme a su susciter notre curiosité insatiable de découvertes socio-anthropologiques. Il n’est pas trop connu des jeunes générations de nos jours et très peu de celles d’hier, n’empêches qu’il a su frapper l’imagination de ceux qui ont eu le privilège de le côtoyer soit physiquement soit au travers d’ouvrages mémorables publiés avant ou après son décès. Certains disaient de lui qu’il était un génie tandis que d’autres le classaient parmi les grands visionnaires de notre époque contemporaine. Il se peut qu’il soit doté de l’un ou même des deux qualificatifs qu’on tend à lui attribuer jusqu’à ce moment présent. Un génie consensuel ? Il y a, là, matières à discussion. Mais, un Esprit de Génie, incontestablement, il y a consensus car l’artisan politique, intellectuel de l’Algérie indépendante reste avant tout un Esprit éclairé aux avant-gardes des dangers et challenges qui guettent la quiétude de l’Homme Noir tel qu’il le conçoit et l’Homme Noir tel qu’il est conçu. Il s’agit bien de cet intellectuel hors pair qu’ est l’illustre Frantz Fanon auquel nous souhaiterons rendre hommage et par-dessus tout mettre à jour ses contributions et réflexions sur des thématiques aussi variées que sont la souveraineté des terres des Noirs, l’union sacrée de la communauté des noirs d’ici et d’ailleurs, et l’émergence d’une conscience philosophique du Noir tel qu’il doit être et non tel qu’il devrait être ou tel qu’on veuille qu’il soit.

De la Thématique de l’unité

L’image constante qui ressort des écrits de Fanon reste celle d’un Homme engagé intellectuellement et physiquement sur le terrain du combat intellectuel car Fanon mène un véritable duel contre ce qu’on pourrait qualifier d’impostures de la part des puissances dominatrices de jadis dont le seul but serait d’asservir et de soumettre les volontés d’indépendance et d’autodétermination des noirs. Il n’a de cesse condamné ces criminels silencieux si sournoisement habiles à déloger de leurs trous les poignées de résistants aux forces étrangères illégitimes et illégales. Aux yeux de Fanon, le seul rempart aux avidités voraces de ces occupants illégitimes passerait par l’appel à l’unité des noirs d’ici et d’ailleurs. Car seuls face à l’Ogre occidentale, ce serait le suicide collectif annoncé ; Cependant, tous unis d’une même voix, c’est peser sur la balance. Et peser sur la balance, c’est entendre raison, c’est faire valoir ses droits, c’est se rendre crédible. Aux yeux de Fanon, le remède des maux des noirs ne réside ailleurs que dans leur union fut elle spirituelle, morale, physique, ou intellectuelle. Certes, les Noirs se doivent de s’unir vu les circonstances historiques et géostratégiques qui ne cessent de peser sur leur devenir ; Toutefois, qu’en est il des voies et moyens susceptibles de conduire les Noirs de toute race confondue vers l’Idéal ou, du moins, le réalisme tels que voulu par le penseur unioniste. Suffit-il donc d’énoncer l’exigence de l’unité aux périls de tout pour galvaniser les foules sur l’impératif de booster l’occupant hors des territoires conquis ? Et sinon, A quelle unité Frantz Fanon fait il référence ? De l’unité des cœurs ou bien de celle des Esprits ? De l’unité des esprits, il n’y a là point d’innovations philosophiques. De l’unité des esprits, et bien beaucoup de penseurs en ont abordé le sujet ou tout simplement en ont épuisé. Rien de nouveau sous le soleil ne dirait-on finalement ? La recette de Fanon passerait pour être un discours circonstanciel et purement politique sans véritable avancées significatives. On se souvient des pionniers unionistes qui clamaient haut et fort l’impératif du « Nous Collectif » contre les dangers de suprématie occidentale. De l’impératif, il n’en fut point un sujet de débats. Par contre, des moyens à mettre en œuvre ainsi que du suivi tels devraient être les points focaux des réflexions engagées par le penseur-écrivain. Et Fanon ne se contente pas d’emboiter le pas à ces ainés. Bien au contraire, il nous propose à sa façon une autre perspective de l’unité des noirs notamment des noirs au sud du Sahara. L’originalité du penseur réside dans les idées contenues dans les mots et expressions fortes énoncées par le penseur. Fanon se démarque de ces ainés en ce sens qu’il cherche à saisir par le stylisme de ces écrits la profondeur de la thématique abordée. Il ne parle pas de n’importe qu’elle union des noirs fondée sur n’importe quelle idée. Il ne lance pas d’idées vagues sur le sujet. Il se veut méthodique et objectif. Et en tant que psychiatre, les mots et les références ainsi que le stylisme ont du sens. La parole en elle-même, son sens et la façon de parler véhiculent une pensée. Il passe par un système de langage subtil dans lequel chaque mot placé dans un contexte donné revêt une importance capitale. Aussi, faut-il se demander si véritablement Fanon est lu ? Et si oui, Est il vraiment comprit ? Il se peut qu’il soit lu (quoique), mais il ne semble pas qu’il soit compris totalement. Et il n’y a pas à être un génie pour le comprendre car son langage est dépouillé et clair aussi clair que l’eau de roche. Fanon interpelle sur les mots et leurs sens. Il énonce les mots et laissent le champ de l’interprétation ouvert. Il diagnostique le mal par les mots tels un « psy » soigne par la parole. Et des mots, c’est ce dont il faut prêter attention pour comprendre le penseur. Il ne s’agit point de faire une analyse grammaticale ou structurelle de l’écrit, mais une analyse référentielle. Et par référentielle, on n’entend pas seulement circonstancielle ou contextuelle, mais informative. Une analyse qui donne du sens par référence .L’unité Africaine à la Frantz Fanon est l’unité du sens référentiel. Elle n’est pas un dictat encore moins un dogme. Elle se veut un reflet d’exemplarité, d’image fidèle. Avons-nous vraiment lu Fanon serait on encore une fois tenter de se poser comme question ? Vraisemblablement non .Aussi, Fanon, par son énoncé de l’unité, part d’un constat. Celui-ci repose sur l’ineffectivité de l’abstrait dans le langage engagé pour ainsi dire. Il innove par le langage concret .Et pour lui, chaque mot employé doit symboliser une image concrète et surtout intelligible. L’abstrait tend à la banalisation. Ainsi, se propose t il d’aborder l’unité comme un postulat. Une chose déjà établie comme nécessaire et auto réalisatrice. Il n’y a point lieu d’en débattre. Mais au contraire, D’en admettre l’objectivité puisque le fait sous tend l’action- dans ce contexte précis de l’unité. D’ou le terme « principe » qu’il emploie. Et il n’use point le complément relatif « par lequel » qui sous entendrait un énoncé de moyens à y parvenir, mais le mot de liaison de la conjonction relative « duquel ». Par là, l’écrivain se démarque de ces prédécesseurs et laisse croire que les moyens mis en œuvre pour parvenir à cette unité sont truffés d’incertitudes et d’embuches. Bien au contraire, il souhaite faire admettre dans la conscience noire que l’Esprit qui préside à la destinée de l’unité dépasse le cadre de la discussion et s’élargit aux limites de la raison. Il serait comparable à l’Esprit présidant aux actes et faits établis par les Hommes sur un plan historique voire eschatologique tels qu’énoncés par le philosophe Allemand Hegel dans son idéalisme subjectif. Et Fanon de continuer « duquel on se propose de réaliser.. . ». L’idée sous tend l’action dans le fait politique. L’idée est déjà préconçue dans la tête, voire admise, mais la concrétiser passe l’action. D’ou le terme « à réaliser » se gardant de toute abstraction ce faisant. Mais ce qui est plus frappant c’est ce qui suit « de réaliser les Etats-Unis d’Afrique » .Arrêtons nous un instant sur cette analogie intéressante. Il parait clair que Fanon attire notre attention sur un type de modèle d’intégration des pays d’Afrique tablé sur le modèle nord américain. Le modèle Américain des Etats Unis passe aux yeux du Psychiatre non pas comme une alternative, mais une plausibilité. Le modèle Américain serait donc transportable sur le continent noir. Mais sur quoi se fonde ce modèle en question ? Sur la nécessité d’une union dans la diversité certes mais une union dans l’autonomie partielle des Territoires réunis. Fanon n’est pas sans savoir que ce modèle Américain consentit d’énormes sacrifices en termes de vie humaine notamment. Il s’est fondé sur le mépris des autochtones, sur la logique de plus fort face au plus faible. Il n’est pas passé par le dialogue des mots, mais plutôt le dialogue des armes. Une union dans le sang voilà d’où est née l’Amérique d’antan. Le compromis n’est venu que plus tard après que les armes se soient tues et l’humanisme ait regagné son blason d’honneur. La logique du conflit, de la survie, présida au destin de l’Amérique pour ainsi dire des Etats Unis. Pourrait-il être de même sur le continent noir en ce siècle humaniste et droit-hommiste ?

Le temps des empires Africains n’est il pas révolu ? L’époque ou un Soundjata Keita mènait batailles pour asservir les royaumes Bambara, n’est elle pas d’un autre temps ? Fanon reste catégorique. Il y a lieu de lutter, de combattre et même de se combattre car il n’exclut point la traitrise de ces Frères d’armes prétendument œuvrant au salut et à la libération du continent. Il invite à régler le compte à ces traitres de la manière la plus adéquate possible sans excès et sans violations de l’intégrité des apatrides. Et son cri de cœur dénonçant cette situation est un appel à la vigilance des Africains quand il confiait « Il est de fait qu’en Afrique, aujourd’hui, les traitres existent ».S’il passe pour être pacifiste dans l’âme, Fanon exclut toutefois tout recours aux armes pour parvenir aux fins voulus à l’exception des traitres et là même rien n’est moins sur. Contrairement à l’exemple Américain, il prend soin de souligner l’importance d’éviter la confrontation militaire avec son lot de cadavres innocents, mais plutôt encourage la confrontation des faits donc le constat établi. Aussi, précise t il « sans passer par la phase ….avec son cortège de guerres et de deuils ».Si nous admettons consciencieusement l’impératif de l’unité, et si nous l’acceptons comme tel sans aller dans les débats houleux et inutiles, que dire de la pratique ? Que faut-il faire pour la réaliser cette unité ? L’idée de Fanon n’est pas loin de la sagesse du philosophe français Voltaire du dix huitième siècle quand il fait référence au pragmatisme concret appelant chacun à labourer son champ. Aussi, Fanon appelle à labourer le champ de l’unité non pas par la pensée uniquement, mais surtout par l’acte d’ou l‘expression « Main de l’Africain » placée devant « Cerveau » Et Fanon d’affirmer pour conclure« L’Afrique ne sera pas libre par le développement mécanique des forces matérielles, mais c’est la MAIN DE L’AFRCAIN et son Cerveau qui déclenchent et mèneront à bien la dialectique de la libération du continent ».

A l’Heure de l’Asie : C’est quoi etre Asiatique?

Posted in Humanities, Philosophy on April 17, 2010 by saiigain

 Etre asiatique en appelle à etre dans une region donnée du monde, vivre au sein d’une communauté d’Hommes, avoir une culture donnée, avoir un certain rapport avec autrui et le monde et se familiariser avec un héritage culturel,civilisationnel, philosophique millénaire. L’oeuvre collective  de Mme Burken et Patout intitulée “A la Découverte de l’Asie” passerait pour une bonne introduction aux modes d’etre de la vie , du vécu des asiatiques: Des attitudes, comportements du quotidien aux identités culturelles et sociales ancrées depuis les générations passées. L’oeuvre, à la  fois pédagogique et pratique, invite le lecteur à la découverte du monde asiatique tout en soulignant ses points communs et ses points de divergences ou particularismes propres d’avec le monde occidental que ceci soit sur le plan des affaires ou sur le plan de la culture tout court.

Une philosophie du Monde et de la Vie

De la pensée asiatique, l’on retient souvent le role crucial de la famille, du Guanxi (connections entre les membres de la communauté),et des ancetres-le culte des anciens- sans oublier des principes métaphysiques qu’on rencontre souvent dans les livres religieux ou philosophiques  comme le Karma, la Ré-incarnation etc. Toutefois, un des aspects importants du vécu de l’asiatique réside dans ses rapports avec les notions de l’apprentissage-l éducation-,du  Travail et du Temps(par ricochet du Devenir également). Pour ce qui est de l’apprentissage, l’on note dans l’oeuvre  precitée “Les Asiatiques  donnent toujours l’impression qu’ils n’en ont jamais assez d’apprendre.Ils veulent toujours s’améliorer : Cette perfection de soi est innée et dictée par quelque chose d’inexplicable”. Ce souci constant de l’apprentissage dans la vie éducative et sociale touche aussi le vécu existentiel lui meme. La vie,disons, le vécu humain, passe également pour une opportunité privilegiée d’apprentissage de la vie et sur la vie “Les évènements de la vie, heureux ou malheureux sont riches d’enseignements et servent de leçons à moins d’offrir de nouvelles perspectives à suivre”. Le fatalisme religieux ou de la destinée ne semble pas un facteur d’obstacle majeur à l’action ou au desir de surmonter les épreuves de la condition humaine meme s’il apparait rait que les asiatiques subiraient l’héritage des actions des ancetres et du fait des actes ou actions supposées des ancetres dependreraient les épreuves dont ils seraient appelés à faire face durant l’existence.

Un art de la communication

La culture du silence et de la discrétion demeurent des aspects importants dans le vécu des asiatiques. Tout ne se dit pas et le non-dit est sous entendu souvent dans les actes et les gestes qui en disent plus long que les mots et la parole. “En Asie, l’essentiel dans toute communication ne se trouve pas seulement dans le message transmis, mais dans la manière utilisée pour s’exprimer” notent les auteures qui rencherissent en disant “il n’est point question de tout dire, puisque le contexte est riche de sens”. Une idée qui rejoint le fameux dicton ” La parole est d’argent mais le silence est d’or” ce qui montre tout l’intéret de la discrétion et du silence dans l’acte de communiquer et Confucuis, l’un des plus grands philosophes chinois, enseignait “le silence est un ami qui ne trahit jamais”.

Une Génèse du Monde et du Devenir

Contrairement aux religions revelées qui posent la question du sens de la vie, du devenir, du salut de l’humanité, de la place et du role ,de la responsabilité de l’Homme au sein de la création, ainsi que de la mission de ce dernier,les auteures font bien de souligner “la philosophie asiatique ne pose pas le problème de la création. C’est un fait. Ce monde existe par lui-meme.” Il va de soi qu’une telle conception du monde et  donc de l’origine , de la génèse par conséquent du Temps lui meme, ferait peu de cas de la moralité religieuse.: La Finalité des actes et des actions et le Jugement Supreme. Puisque l’Homme est, tout ce qui est, est appellé à la lutte pour la survie et la survivance. Les moyens pour y parvenir, cependant,  pourraient tenir compte de toute considération éthique sachant que les philosophies asiatiques seraient en grande partie des philosophies éthiques ou éthico-politique ,à la limite ,spirituelles, mais très peu de considérations religieuses  dictées par un Dieu Créateur supreme, Législateur absolu. Le rapport au Temps ne paraitrait pas similaire pour un asiatique et un africain par exemple. Il va de soi que le slogan contemporain “Time is money” ou le Temps, c est l’argent” ne pourrait que s’accomoder merveilleusement à la culture et à la sagesse orientales.

Crises de mathématiques ou des logiques?

Posted in science on April 15, 2010 by saiigain

Discussion autour de la thématique de la Crise des Mathématiques modernes et postmodernes

“Les mathématiques peuvent etre definies comme une science dans laquelle on ne sait jamais de quoi on parle ni si ce que l’on dit est vrai” Bertrand Russell

Monsieur, -J’ai démontré le cinquième postulat d’Euclide. Donc la relativité d’Einstein est rejetée avec les géométries non-euclidiennes. Vous devez tirer les conséquences.

-Je pense, cher monsieur, que vous devriez vous interesser plus aux fondamentaux et à l’histoire des mathématiques postmodernes. Toutes les mathématiques,leu nature rationnelle et leur nature de sciences exactes proviennent de la rigueur des logiques et des raisonnements qu’on y applique; La Géometrie n’est pas que l’affaire de construction de lignes et de demonstrations de figures geometriques.A une époque donnée, l’on jugeait inconcevable que deux lignes parallèles puissent constituer un plan; aujourd’hui, le bon sens et l’evolution des mathématiques l’admettent. Il ‘y a une relation directe entre les logiques formelles, à la base les logiques d’aristote, puis après de BOOle, etc aux logiques modernes. Je vous rappelle que les logiques analytiques seraient apparues à la faveur de la problématique du solutionnement du cinquième postulat d’euclide qui soi disant passant soutenait que etant donné une droite donnéé,et un point du plan, on ne peut mener qu’une droite parallèle par ce point à la droite de referrence. Ce postulat ,le terme postulat je vous rappelle est du ressort de la logique encore une fois, d’euclide a été justement remis en cause par les pères fondamenteurs des logiques analytiques, godel, entre autres. Les geometries non euclidiennes seraient ainsi apparues à la suite de cette problématique. je continuerai ce débat prochainement.

N .B : De geo (la Terre, l’espace )et metrie (la mesure, la quantification, le metrics, ;;),on definirait la geometrie comme la science mathématique qui se penche sur l’étude des propriétés et des relations dans le champ de l’espace,étude basée sur des postulats,des definitions,des grandeurs, et des representations spatiales ainsi que des figures géometriques et leurs relations.

Monsieur, -Les mathématiques modernes, postmodernes et contemporaines sont sans fondements et sont erronées. Donc il n’est raisonnable de m’inviter à patauger dans la mer des illusions. Vous devez lire et approfondir les tentatives de Saccheri et Lambert au 18ème siècle pour comprendre comment leur échec a conduit Bolyai, Lobachevsky et Gauss à la géométrie hyperbolique , et conduit plus tard Riemann à la géométrie elliptique. Ces deux géométries sont non-euclidiennes et construites sur des définitions arbitraires et pleines de failles. La géométrie vraie est celle qui démontre son théorème de base qui se rapporte à la relation entre deux lignes droites dans la surface plane coupées par une troisième droite appelée sécante ou transversale. Les mathématiciens qui essayèrent de saisir cette relation ont échoué parce qu’ils n’ont pas compris la nature de la ligne droite. Donc, si vous voulez engager un débat, il faut commencer par le quadrilatère connu sous le nom de Saccheri et appliquer correctement les principes de la géométrie. Quant à la logique je vous invite à méditer la citation de Hermann Weyl : «Logic is the hygiene the mathematician practices to keep his ideas healthy and strong» Votre assertion suivante : « La Géometrie n’est pas que l’affaire de construction de lignes et de demonstrations de figures geometriques. » N’est pas pour l’honneur de la géométrie, car celle-ci est la science fondatrice de la mathématique et de toutes les sciences. Son rôle est de démontrer les vérités éternelles à partir d’axiomes vrais et évidents en étudiant les figures dans l’espace à trois dimensions pour y trouver les relations universelles et immuables de l’ordre et de la mesure. Le terme Postulat est une demande de construction et ne concerne que la géométrie. Je vous rappelle que la géométrie démonstrative naquit 300 ans avant Aristote et avant sa logique formelle. Je vous conseille vivement de lire l’histoire de la géométrie grecque. Encore une fois je vous dis que les géométries non-euclidiennes sont nées au moins 100 ans avant Gödel et la logique analytique. Une fois de plus je vous urge de lire l’histoire de la géométrie et de la mathématique durant toutes les époques avant d’émettre des opinions qui contredisent l’histoire de la mathématique. Dommage que les géométries non-euclidiennes induisent en erreur le plus précieux don que Dieu fait à l’homme, à savoir la raison.

 – Laisser moi faire une certaine mise au point : D’abord, en affirmant que la géometrie n’est pas une affaire de construction geometrique,allusion à ma citation, je ne pretends nullement faire deshonneur à la geometrie. Aujourd’hui, toute la question autour des mathématiques et surtout la géometrie, c’est de savoir dans quelle mesure celle ci decrit fidèlement ou pas la réalité et en quoi l’influence phenomenologique de l’esprit au travers de la construction mentale intervient. Et pour ce qui est de vos arguments, ils ne font point office de preuves necessaires et suffisantes. La citation sur la logique avancée par ce logicien et mathématicien ne constitue en rien une opinion tangible et indiscutable; ce n’est qu’un avis.La citation n’est qu’une illustration d’une idée. Ensuite, je vois mal sur quels arguments concrets en dehors des principes formels et classiques des géometries héritées du passé pourriez vous avancer contre les fondements des mathématiques et des logiques modernes et post-modernes.Vous affirmez d’emblée que ces mathématiques et logiques seraient infondées sur des bases qui sont toujours en débat chez les mathématiciens contemporains. L’affaire sur ce sujet n’est pas tranchée complètement. Ensuite, je ne suis pas sans savoir que très vite la geometrie a pris son indépendance sur la philosophie et ceci à travers l’histoire dela philosophie qu’on a tous appris en classe terminale dans les débuts à l’initiation à celle ci. Mais là je voudrais attirer votre attention que la logique et la géometrie tissent des liens étroits.L’un ne saurait s’établir sans le concours de l’autre.J’irai meme loin la Logique aurait devancé les sciences si l’on en juge par le contenu de cet article qui sous-entend l’apparition première de logique avant le fondement veritable des Sciences telles qu’on les a apprises apparemment selon les opinions de Leibniz,Godel .Et, en quoi sommes nous tenus de tenir pour vrais les principes logiques de la géometrie classique comme absolus? Je vous rappelle que ces principes passent pour evidents dans la mésure ou on part du principe qu’ils seraient conformes à la raison et au bon sens;On les a consideré comme vrais comme tels sans vraiment demontrer en quoi ils sont vrais. Le postulat, l’axiome, etc sont choses admises comme vrai mais en aucune manière ils ont fait l’objet de preuves absolues.Et l’argument ontologique contraignit à faire admettre qu’à moins d’admettre une infinité de possibiltés voire de causes à effet à l’infini,il fallait partir de principes dits naturels dit-on à l’origine qu’on disait conforme à la raison et au bon sens,pour de ce faire aboutir à l’etablissement d’un processus de raisonnement. J’ai une citation fameuse pour vous ,trois à vrai dire,également ” “ God himself made the whole numbers: everything else is the work of man”. – Leopold Kronnecker “It is not certain that everything is certain” Blaise Pascal “La science est une théologie qui s’ignore”, Jean Pierre Dupuis, polytechnicien, philosophe français. Vous voyez dans les mathématiques, les fondements ne sont guère absolues certitudes. Je vois mal alors en quoi vous pretendez faux au sujet des mathématiques modernes et postmodernes. Et, j’ai oublié d’ajouter ceci concernant les fondements et l’origine des sciences géometriques. Rappelez vous que les premiers géomètres grecs ontséjourné en Egypte antique.Ils y ont été initiés la bas y compris pythagore,à qui on associe l’invention du terme “philosophie”. Et, en egypte, les sciences des nombres et des lignes sont intimement liées au culte et au symbolisme. Les préceptes de la géometrie originelle trouvent selon certains specialistes leur origine en Egypte, chez les pretres et mathématiciens de ce temps, d’autres avancent qu’il est le fruit d’observation empirique, d’autres enfin parmi les modernes soutiennent que ceci serait issu d’un esprit de vision.Lisez ce que en pense Grothendick à ce sujet. Ce sont tout ça qui font craindre que la certitude en la matière de façon absolue reste problématique; En plus, songez à la philosophie de Emmanuel Kant et sa critique de la Raison Pure. Par ailleurs, pour revenir, à votre pretendue comprehension de la droite, jusqu’à au collège, on avait l’habitude d’enseigner que une droite est une infinité de points alignés. Contrairement à un segment qui est borné, la droite partirait d’un point donné et s’etendrait à l’infini. Et justement, jusqu(ou il faudrait apprehender la notion d’infinie. L’origine des mathématiques modernes et postmodernes fait echo à la problématique de l’infinie à la fois dans les mathématiques théoriques (les theories des nombres et des ensembles” et le domaine de la representation mathématique. Les plus grands mathématiciens du 19eme 20eme siècle ont mis en cause la realité d’une infinité d’etendue . Je ne vous apprend rien à ce sujet.Et c’est de leurs travaux d’ailleurs que les crises des mathématiques modernes versus classiques seraient apparues Monsieur, -Vous auriez mieux fait de travailler sur la réfutation de la démonstration d’IBN AL HAITHAM sur la page 1 du forum de mon site : http://www.mathtruth-rachidmatta.com. Vous verrez vous-même que le contenu de votre présent e-mail s’évapore comme un nuage d’été. Allez au cœur du problème et laissez tomber les écorces. Je commente vos citations. 1 – La citation de Kronecker « God himself made the whole numbers: everything else is the work of man.», prouve que ce que Dieu a fait est exact et tout le reste c’est-à-dire toutes les mathématiques modernes sont fausses et pleines de contradictions. 2 – “It is not certain that everything is certain” Blaise Pascal Si Pascal avait bien saisi la nature exacte de la ligne droite il aurait vite compris que la géométrie est une science certaine et peut-être il aurait pu démontrer le cinquième postulat d’Euclide. 3 – “La science est une théologie qui s’ignore”, Jean Pierre Dupuis, polytechnicien, philosophe français. Seule la science mathématique est une métaphysique et la géométrie est une théologie, car son principe d’extension, le point, est le plus proche de l’UN. Mais cette théologie s’ignore pour les non géomètres qui ne savent être parfaits comme leur père céleste pour géométriser avec lui ; Quant aux autres sciences, elles reçoivent leurs principes de la mathématique et seront ses applications dans l’espace du monde réel de la physique qui a trois dimensions. Ce sont des sciences expérimentales et elles n’ont rien à voir avec la théologie. M. Jean Pierre Depuis n’a donc saisi la nature exacte de la géométrie comme, d’ailleurs, tous les penseurs non-euclidiens. Ça vous dérange que j’attaque tout le monde, mais c’est la vérité, et sa loi est impitoyable. N’oubliez pas d’examiner le quadrilatère de Saccheri pour constater que tous les mathématiciens, logiciens et philosophes modernes, postmodernes et contemporains se sont trompés, car ils n’ont pas cherché les principes de la géométrie dans leur Unique origine: DIEU.

-D’une chose, je ne vous ai point demandé de commenter sur ces citations.Je vous ai donné ces citations comme exemples pour vous dire ce que valent les citations:Leur autorité ne vaut que ‘autorité de leurs auteurs;en aucune manière, je les avance pour preuves, juste pour vous dire que les citations ne sont pas des preuves; De deux(choses), vous semblez avoir mal interpreté ces citations. Celui de Kronecker, vous le commentez hors contexte à mon hmble avis. Par cette citation, il voulait attirer l’attention sur la problematique de la certitude absolue dans les sciences mathématiques et ses propos tendent à relativiser la verité mathématique comme une absoluté. Si les nombres relatifs sont de l’ordre de l’ihumain, tout le reste l’est et en celà le reste peut etre objet de débats.Pour blaise pascal, rien n’est verité absolue, tout peut faire l’objet de débats; pour jean pierre, dupuis, c’est la reference aux fondements des principes mathematiques qui tendent au travers des crises des mathématiques modernes sur le plan theorique à y voir une forme d’ontologie et de phenomelogie. Et toutes les sciences humaines ne se basent pas uniquement sur des methodologies heritées des mathématiques comme vous le pretendiez. Enfin, pour vous amener à un auteur plus contemporain, sur le lien entre logique, intuition, pensée, representation, je vous invite vivement à lire ce que en dit henry bergson et son intuitionisme. Lisez aussi la Pensée et le Mouvant. Ceci ne me derange pas que vous critiquiez les choses; au contraire,j’apprécie l’esprit de contestation duquel souvent debouche la verité.

texte en appui (9):

[1] l Auteur

l Les Éditions AGONE

l Naissance de la

sociologie

l Essais II. L’époque, la

mode, la morale, la

satire

l Essais III. Wittgenstein &

les sortilèges du langage

l Essai IV. Pourquoi pas

des philosophes ?

l Essai V – Descartes,

Leibniz, Kant

l Contact

l Crédits

Fil des ouvrages

Fil des documents

l La Lettre de Revues.org

Index

Présentation

Banc d’essais

Informations

Syndication

Lettres d’information

II-Logique et mathématique

p. 141-165

Utopie et réalité : Leibniz, Gödel et les possibilités

de la logique mathématique

Essai V – Descartes, Leibniz, Kant – Jacques Bouveresse

Plan | Texte | Notes | Note de fin | Citation

1. La référence leibnizienne chez Gödel

2. La question des fondements et le problème de l’invention

mathématique

3. Le programme leibnizien et la question des « limitations internes »

des formalismes

Plan

1. La référence leibnizienne chez Gödel

Texte intégral

Dans « Russell’s Mathematical Logic » (1944), Gödel distingue deux aspects

fondamentaux différents de la logique : « La logique mathématique, qui

n’est rien d’autre qu’une formulation précise et complète de la logique

formelle, a deux aspects tout à fait différents. D’un côté, elle est une

section des mathématiques traitant de classes, relations, combinaisons de

symboles, etc., au lieu de nombres, fonctions, figures géométriques, etc. De

l’autre, c’est une science, antérieure à toutes les autres, qui contient les

idées et les principes sous-jacents à toutes les sciences. C’est dans ce

deuxième sens qu’elle a été conçue en premier lieu par Leibniz dans sa

Characteristica universalis, dont elle aurait formée une partie centrale. Mais il

a fallu presque deux siècles après la mort de Leibniz pour que cette idée

d’un calcul logique réellement suffisant pour le genre de raisonnement qui

apparaît dans les sciences exactes soit mise en oeuvre (tout au moins sous

une certaine forme, sinon sous la forme que Leibniz avait en tête) par

Frege et Peano. » [PM, 447]

1

Leibniz a, bien entendu, apporté une contribution tout à fait déterminante

au premier aspect. Et il est même le premier à avoir reconnu tout à fait

clairement qu’on peut proprement calculer sur bien autre chose que des

nombres et qu’il peut par conséquent y avoir une mathématique non

seulement des nombres, mais également des concepts, des propositions,

des classes et de bien d’autres choses. Mais, même si l’essentiel de la

recherche en logique mathématique est consacré aujourd’hui à cet aspectlà,

l’intérêt de Gödel, spécialement dans l’essai que j’ai cité, porte en fait

principalement sur le second aspect. Partant de Leibniz, il en arrive, en

passant par Frege et Peano, assez rapidement à Russell et il met alors

entre parenthèses presque toutes les considérations de détail qui ont trait

« au formalisme ou au contenu mathématique » des Principia Mathematica

pour se concentrer essentiellement sur « le travail de Russell concernant

l’analyse des concepts et des axiomes sous-j a c e n t s à l a l o g i q u e

mathématique » (ce qui, comme le remarque Hao Wang, aurait

probablement été un titre plus exact pour son essai). La façon dont il

procède dans cet essai donne certainement une idée exacte de ce qu’il

considère comme central dans la logique mathématique, telle qu’il la

conçoit, et également du degré auquel il prend au sérieux le projet

2

Recherche

Français Accueil Banc d’essais Essai V – Descartes, Leibniz, Kant I I-Logique et mathématique Utopie et réalité : Leibniz, (…)

— Publications — Calenda Hypothèses La Lettre Enquêtes Revues.org Léo, le blog Cléo

leibnizien – y compris, ce qui est à la fois un peu difficile à comprendre et

assez déconcertant, pour ce qui est des vertus heuristiques tout à fait

prodigieuses que lui attribuait Leibniz.

Gödel a étudié Leibniz de façon assez systématique dans les années 1943-

1946, à un moment où il avait cessé pour l’essentiel de faire des recherches

dans la logique proprement dite et où, comme le dit Wang, son travail est

devenu plus philosophique que mathématique. On sait aussi que ses

papiers contiennent de volumineux cahiers de notes sur Leibniz et sur la

littérature consacrée à Leibniz. De tous les philosophes, c’est certainement

lui qui était à ses yeux le plus grand et qui l’a le plus influencé. Nous savons

qu’i l l’admirait d’une façon presque inconditionnelle et qui n’est pas

simplement celle que l’o n p o r t e à u n g r a n d a n c ê t r e h i s t o r i q u e : i l

considérait, en effet, comme tout à fait possible de remettre aujourd’hui en

chantier un grand programme de métaphysique rationaliste aussi ambitieux

que l’avait été le sien. D’a p r è s W a n g , « Gödel semble être d’avis que

Leibniz a considéré toutes les choses réellement fondamentales et que ce

dont nous avons besoin est de voir ces choses plus clairement » [RKG,

211]. Cela concorde tout à fait avec la tendance générale de Gödel à

considérer que deux ou trois siècles supplémentaires de philosophie n’ont

p r o v o q u é q u e d e s c h a n g e m e n t s r é e l l e m e n t m i n i m e s d a n s n o t r e

compréhension des choses fondamentales en philosophie et que la tâche

principale reste aujourd’hui comme hier de chercher à appréhender plus

clairement les concepts fondamentaux. Sur un point, il est d’accord avec

Newton, puisqu’il pense qu’i l d e v r a i t ê t r e p o s s i b l e d e f a i r e p o u r l a

métaphysique l’équivalent de ce que Newton a fait pour la physique, à

savoir trouver une « théorie axiomatique » correcte pour elle, au moins

dans ses grandes lignes. Sur un autre, il est d’accord avec Leibniz et l’est

notamment dans la compréhension que Leibniz a de la nature des concepts

physiques. Gödel a expliqué, du reste, que, s’il était parvenu à construire

un système philosophique, cela aurait été une forme de monadologie.

3

En ce qui concerne la philosophie, son attitude pose, comme le remarque

Wang, un problème difficile puisque, tout en proclamant sa confiance dans

les vertus de la méthode axiomatique, il est obligé en même temps

d’admettre qu’il n’a même pas réussi à déterminer ce que peuvent être les

concepts primitifs de la métaphysique et encore moins à trouver les bons

axiomes pour eux. Wang résume sa position en disant que « Gödel semble

vouloir continuer à partir de l’endroit où Newton et Leibniz se sont arrêtés,

et croire que le cours de l’histoire après le XVIIe siècle a régressé plutôt que

progressé, sauf pour ce qui concerne l’accroissement de l’information (mais

non de la compréhension réelle) en mathématiques, dans les sciences de la

nature (et dans certains autres domaines). Alors qu’il utilise la physique de

Newton comme modèle, sa sympathie philosophique va à Leibniz. Il n’est

pas satisfait de la compréhension que Newton a des concepts physiques,

mais souhaite continuer la tentative faite par Leibniz pour analyser plus

profondément les concepts physiques d’une manière telle que ceux-ci

soient fusionnés avec les concepts réellement primitifs de la métaphysique.

De ce fait, en particulier, il n’e s t p a s s a t i s f a i t d e s “fondements

métaphysiques” k a n t i e n s d e l a p h y s i q u e ( n e w t o n i e n n e , p l u t ô t q u e

leibnizienne) » [RKG, 165]. Le point crucial, bien sûr, est que l’entreprise de

Kant consacre à ses yeux le divorce regrettable de la physique d’avec la

métaphysique. Comme la plupart des représentants de la tradition

philosophique autrichienne, Gödel n’est pas impressionné par la révolution

que Kant est supposé avoir effectuée et par la façon dont elle a déterminé

pour une part essentielle l’orientation de la philosophie au cours du XIXe

siècle. Il pense que ce sont essentiellement les « préjugés de l’époque »

qui nous empêchent de reconnaître que l’on pourrait très bien essayer de

reprendre les choses à un stade antérieur.

4

Dans l’admiration que Gödel professait pour Leibniz, il y a quelque chose

qui confine par moments plus ou moins à la mythologie et même, semble-til,

à la mythomanie. Pendant la Deuxième Guerre mondiale, il était obsédé

par l’idée que certains des manuscrits de Leibniz risquaient d’être détruits

parce qu’on n’avait probablement pas fait le nécessaire pour les mettre à

l’abri. Il pensait même apparemment que certains avaient intérêt à ce qu’ils

soient détruits. En 1939, Karl Menger lui a demandé qui pourrait bien avoir

intérêt à ce que les écrits de Leibniz soient détruits. À quoi il a répondu :

« Naturellement, les gens qui ne veulent pas que les hommes deviennent

plus intelligents. » Et comme Menger lui avait objecté que Voltaire serait

probablement une cible plus plausible, il a rétorqué : « Qui est jamais

devenu plus intelligent en lisant les écrits de Voltaire ? » [RKG, 103] Gödel

semble avoir pensé qu’un bon nombre des idées et des écrits de Leibniz

avaient été en réalité déjà bel et bien été perdus, un peu comme l’a été la

démonstration par Fermat de son théorème – si toutefois il en avait

réellement une, ce dont beaucoup de mathématiciens doutent aujourd’hui.

Apparemment, Gödel croyait qu’en plus de ce que l’on sait d’eux les écrits

de Leibniz pourraient bien avoir recelé quelque trésor ou quelque secret,

peut-être aujourd’hui définitivement perdu, qui aurait rendu possible des

progrès spectaculaires dans la découverte mathématique elle-même et la

résolution des problèmes mathématiques.

5

À la fin de son essai sur « La logique mathématique de Russell », il revient

au problème de l’analyse des concepts fondamentaux et à Leibniz. En dépit

d e s p r o g r è s c o n s i d é r a b l e s q u i o n t é t é r é a l i s é s d a n s l a l o g i q u e

mathématique depuis les Principia Mathematica, « bien des symptômes,

écrit-il, ne montrent que trop clairement que […] les concepts primitifs ont

besoin d’être élucidés davantage. Il semble raisonnable de supposer que

c’est cette compréhension incomplète des fondements qui est responsable

du fait que la logique mathématique est restée jusqu’ici tellement en deçà

d e s a t t e n t e s é l e v é e s d e P e a n o e t d’autres qui (d’accord avec les

affirmations de Leibniz) avaient espéré qu’elle faciliterait les mathématiques

théoriques dans la même mesure que le système décimal des nombres a

facilité les calculs numériques. Car, comment peut-on espérer résoudre des

problèmes mathématiques de façon systématique par la seule analyse des

concepts qui y apparaissent si notre analyse jusqu’à présent ne suffit

même pas à établir les axiomes ? » [PM, 468-9]

6

G ö d e l p e n s e q u e l a l o g i q u e m a t h é m a t i q u e , a u d e u x i è m e d e s s e n s

distingués plus haut, devrait être une partie centrale de ce qu’était

supposée être la caractéristique leibnizienne. Mais, comme le remarque

Wang, il est pour le moins difficile de voir comment la logique

mathématique, telle qu’elle est pratiquée aujourd’hui, pourrait être étendue

de façon à fournir une méthode puissante (ou même simplement des

directives efficaces) pour de nouvelles découvertes mathématiques. Et

pourtant, c’est ce que Gödel semble bel et bien croire. Il donne l’impression

d’être à peu près aussi optimiste que l’avait été en son temps Leibniz sur

les possibilités du nouvel instrument qu’il avait mis au point, tout en

admettant par ailleurs que nous ne savons même pas réellement comment

nous y prendre pour commencer à le construire. Son idée semble être

qu’une fois que nous sommes arrivés aux bons axiomes nous pouvons

apprendre à appréhender également de façon appropriée les concepts

dérivés et approcher les problèmes de façon systématique. Wang avoue

qu’il ne voit pas les raisons que Gödel pouvait avoir de croire cela, et

j’avoue que je ne les vois pas non plus. Comme le note Wang, « par

exemple, le système standard incomplet de la théorie des nombres est

modérément adéquat, pour ce que nous en savons, pour la solution de la

plupart des problèmes dans ce domaine, mais ne semble offrir aucune

indication pour une quelconque méthode systématique de résolution des

problèmes. [Gödel] pense-t-il que c’est parce que les concepts ne sont pas

auto-suffisants [self-contained], compte tenu du fait qu’ils ne sont pas

suffisamment fondamentaux (peut-ê t r e c o m m e l e r é v è l e

l’incomplétabilité) ? » [RKG, 311]

7

Leibniz souligne qu’en même temps que les sciences se complexifient et

s’étendent par le haut (au niveau des superstructures) elles se simplifient

et se condensent par le bas (au niveau des éléments et des fondements).

« On peut même dire, écrit-il, que les sciences s’abrègent en s’augmentant,

[ce] qui est un paradoxe très véritable, car plus on découvre des vérités et

plus on est en état d’y remarquer une suite réglée et de se faire des

propositions toujours plus universelles dont les autres ne sont que des

exemples ou corollaires, de sorte qu’il se pourra faire qu’un grand volume

de ceux qui nous ont précédés se réduira avec le temps à deux ou trois

thèses générales. Aussi, plus une science est perfectionnée et moins a-telle

besoin de gros volumes car, selon que ses éléments sont suffisamment

établis, on y peut tout trouver par le secours de la science générale ou de

l’art d’inventer. » [PS VII, 180]

8

Il n’y a, effectivement, aucun doute sur le fait qu’une fois que nous

disposons des bons concepts, et plus encore des bons axiomes pour eux,

un grand nombre de questions qui ne l’étaient pas auparavant deviennent

généralement abordables et décidables de façon systématique. Mais, cela

étant, on peut se demander ce qui justifie l’optimisme de Gödel en ce qui

concerne le bénéfice que nous pouvons attendre de la recherche des

éléments dans la logique elle-même. Si le point crucial est de trouver des

notions plus fondamentales ou de nouveaux axiomes pour celles que nous

avons déjà, qui nous permettront de décider davantage de questions, il ne

donne guère d’exemple concret de ce que cela pourrait vouloir dire dans les

f a i t s . U n e x e m p l e m a t h é m a t i q u e a u q u e l i l a c c o r d e u n e i m p o r t a n c e

particulière est celui de la notion d’« ensemble ». Il se dit convaincu qu’il n’y

a pas lieu de renoncer à l’espoir de décider un jour l’hypothèse du continu

par l’adjonction d’axiomes supplémentaires pour la notion d’ensemble. En

ce qui concerne certains des nouveaux axiomes de l’infini qui ont été

proposés avec l’espoir de réussir à décider par ce moyen l’hypothèse du

continu, il remarque : « On peut démontrer que ces axiomes ont également

des conséquences bien au-delà du domaine des nombres transfinis très

grands, qui est leur objet immédiat : on peut montrer que chacun d’entre

e u x , s o u s l a s u p p o s i t i o n d e s a c o n s i s t a n c e , a c c r o î t l e n o m b r e d e s

p r o p o s i t i o n s d é c i d a b l e s m ê m e d a n s l e d o m a i n e d e s é q u a t i o n s

diophantiennes. » [What Is Cantor’s Continuum Problem ? (1947) : PM, 477]

Les axiomes en question peuvent donc manifester leur fécondité dans des

domaines divers qui sont parfois très éloignés de celui dont ils traitent

directement. Gödel considère que la théorie des ensembles est confirmée

9

par ses conséquences dans l’arithmétique, en un sens que l’on peut

comparer à celui auquel la physique est confirmée par la perception

sensorielle. Mais le problème est que, si les axiomes dont il parle se

trouvent ainsi légitimés indirectement, ils offrent, en revanche, peu d’espoir

de parvenir à une décision concernant l’hypothèse du continu elle-même.

D’après Wang, Gödel a dit, dans une conversation du 3 mars 1948 avec

Carnap, que Leibniz avait « apparemment obtenu [apparently had

obtained] » une méthode de décision pour les mathématiques [RKG, 173].

C’est sans doute ce que Leibniz croyait. Mais que peut bien vouloir dire une

assertion de cette sorte, et en particulier l’expression « avait apparemment

obtenu » dans la bouche de quelqu’un comme Gödel ? Elle peut sembler

d’autant plus étonnante que, d’après les notes de Carnap, dans une

conversation du 23 décembre 1929, qui est par conséquent antérieure à la

d é m o n s t r a t i o n d e s o n t h é o r è m e , G ö d e l d i t , e n f a i s a n t r é f é r e n c e à

Brouwer : « Les mathématiques sont inépuisables : on doit toujours puiser

à n o u v e a u à l a “source de l’intuition”. Il n’y a par conséquent pas de

Characteristica universalis pour la totalité des mathématiques, et pas de

procédure de décision pour la totalité des mathématiques. » [RKG, 50] Cela

n’e m p ê c h e p a s f o r c é m e n t , b i e n e n t e n d u , q u’il puisse y avoir une

Characteristica universalis pour certaines parties des mathématiques et que

le programme de Leibniz puisse rester, de ce point de vue et dans ces

limites, tout à fait actuel.

10

Gödel était, cela va sans dire, mieux placé que quiconque pour savoir qu’il

ne peut pas y avoir dans les mathématiques de procédure de décision

générale qui opère à la façon d’une machine, même si Leibniz lui-même

pouvait encore croire ce genre de chose et l’a probablement cru. « Les

vérités qui ont encore besoin d’être bien établies sont, dit-il, de deux

sortes, les unes ne sont connues que confusément et imparfaitement, et

les autres ne sont point connues du tout. Pour les premières, il faut

employer la méthode de la certitude ou l’art de démontrer, les autres ont

besoin de l’art d’inventer. Quoique ces deux arts ne diffèrent pas tant qu’on

croit, comme il paraîtra dans la suite. » [PS VII, 183] Mais on peut avoir

l’impression que l’effet d’u n e d é c o u v e r t e c o m m e c e l l e d e G ö d e l e s t

justement de démontrer qu’ils diffèrent, au contraire, bien plus qu’on ne le

croit. L’idéal de la « pureté mécanique » – qui est, pour Leibniz lui-même,

compte tenu de l’idée qu’il se fait de ce que doit être une démonstration

proprement dite, caractéristique de l’art de démontrer – ne semble guère

susceptible de s’adapter aussi à l’art d’inventer, et a fortiori de le favoriser.

Comme le dit Wang, « l’idéal de la formalisation semble aspirer à un type

d’h o m o g é n é i t é ( c o m m e u n e f o r m e d e “pureté”) au niveau qui est

précisément le plus inférieur de l’intelligence. Il est très éloigné d’une

compréhension intuitive de la démonstration, et peut avoir quelque chose à

voir avec l’aspiration à un sens abstrait de la sécurité qui inclut, par

exemple, une protection contre l’oubli, puisqu’il n’y a pas d’étapes qui

soient oubliées dans une démonstration purement formelle. Même si l’on

m e t à p a r t l’exigence de complétude, les systèmes formels possèdent

également cette qualité de “pureté mécanique” qui, cependant, n’aide pas

à l a r e c h e r c h e d e m é t h o d e s p l u s p u i s s a n t e s p o u r d é m o n t r e r d e s

théorèmes » [RKG, 173]. Il y a certainement, chez Leibniz, une tension

constante entre le désir de la sécurité maximale, qu’il trouve, à la différence

de Descartes, dans la formalité elle-même, et un autre désir, au moins

aussi puissant, qui est celui de l’inventivité maximale.

11

Dans une conversation du 15 mars 1972 avec Wang, Gödel dit : « En 1678,

Leibniz a formulé la revendication de la caractéristique universelle. Pour

l’essentiel, elle n’existe pas : toute procédure systématique pour résoudre

des problèmes de toutes les espèces doit être non mécanique. » Et, bien

entendu, même une procédure mécanique ne comporte pas la garantie du

succès universel, puisqu’il subsiste la question de savoir si la procédure

aboutira ou non dans tous les cas à un terme. Gödel est cependant si

impressionné par ce que Leibniz dit à propos de la possibilité de traiter un

jour tous les problèmes, y compris ceux de la métaphysique, d’une façon

que l’on peut qualifier de « mathématique », qu’il écrit dans un article de

1951, « Some Basic Theorems on the Foundations of Mathematics and Their

Applications » : « J’ai l’impression qu’après une clarification suffisante des

concepts qui sont en question il sera possible de mener ces discussions

avec une rigueur mathématique et que le résultat sera alors que (sous

certaines assomptions qui peuvent difficilement être niées [en particulier,

l’assomption qu’il existe tout simplement quelque chose comme la

connaissance mathématique]) la conception platonicienne est la seule qui

s o i t t e n a b l e . P a r l à , j’entends la conception selon laquelle les

m a t h é m a t i q u e s d é c r i v e n t u n e r é a l i t é n o n s e n s i b l e q u i e x i s t e

indépendamment à la fois des actes et des dispositions de l’esprit humain,

et est seulement perçue, et probablement perçue de façon très incomplète,

par l’esprit humain. » [CW III, 322-3] Le fait que Leibniz lui-même ait sur la

question du statut des entités mathématiques et des objets abstraits en

général une position qui est bien plus proche du nominalisme que du

réalisme platonicien est une chose que Gödel semble ou bien avoir ignorée

ou bien avoir décidé de considérer comme tout à fait secondaire.

12

2. La question des fondements et le problème de

l’invention mathématique

D’après Wang, la position de Gödel semble être que, là où il n’existe pas de

méthode de décision mécanique, il pourrait peut-être exister néanmoins

une méthode de décision non mécanique, une méthode qui n’est pas

complètement spécifique et qui ne décide pas formellement les questions,

mais donne des indications sur ce que le mathématicien doit faire pour

parvenir à les décider. Gödel pense apparemment à une méthode qui

permettrait d’arriver à la formulation de nouveaux axiomes en plus de ceux

dont on dispose déjà, ce qui ne peut évidemment pas être fait par une

machine, mais donnerait au mathématicien des directives suffisantes sur la

façon dont il doit s’y prendre pour résoudre les problèmes. Une note

fameuse du mémoire de 1931 explique que la vraie raison de l’indécidabilité

inhérente à tous les systèmes formels des mathématiques réside dans le

fait que la formation de types logiques toujours plus élevés peut être

continuée jusque dans le transfini. Les propositions indécidables à un

certain niveau deviennent décidables toutes les fois que des types plus

é l e v é s s o n t a j o u t é s . L a c o n c l u s i o n q u e G ö d e l t i r e d e s r é s u l t a t s

d’indécidabilité n’est donc pas du tout, comme on le croit souvent, une

incitation à renoncer, mais plutôt une indication concernant le genre de

chose que nous devons faire pour pouvoir espérer parvenir à une décision.

13

Comme le remarque Wang, l’histoire des mathématiques elle-même offre de

nombreux exemples de cas dans lesquels l’invention d’un nouveau système

ou d’un nouveau calcul, comme par exemple la géométrie analytique ou le

calcul différentiel et intégral, rend beaucoup plus facile et systématique la

résolution de toute une classe de problèmes. Dans chacun des cas de cette

s o r t e , d e s t e n t a t i v e s e t d e s c o n j e c t u r e s a u h a s a r d s e m b l e n t ê t r e

remplacées par un certain type de méthode systématique plus contrôlable.

« Leibniz, se demande Wang, pouvait-il chercher une méthode générale de

cette sorte qui s’appliquerait à la totalité des mathématiques ? » [RKG, 174]

Leibniz a certainement rêvé d’une méthode de ce genre, et même d’une

méthode qui permettrait de décider par le simple calcul une multitude de

questions qui n’ont à première vue rien de mathématique. Mais ce qui est

surprenant est la façon dont Gödel semble avoir pris cette idée au sérieux.

À la fin de son article sur « La logique mathématique de Russell », il écrit :

« Il n’y a pas de raison d’abandonner tout espoir. Leibniz, dans ses écrits

sur la Characteristica universalis, ne parlait pas d’un projet utopique ; si

nous devons croire ce qu’i l d i t , i l a v a i t d é v e l o p p é s o n c a l c u l d u

raisonnement dans une large mesure, mais attendait pour le publier que la

semence puisse tomber sur un sol fertile. Il est même allé jusqu’à estimer le

temps qui serait nécessaire pour que son calcul soit développé par un petit

nombre de scientifiques choisis jusqu’à u n p o i n t t e l “que l’humanité

disposerait d’une nouvelle espèce d’instrument augmentant les pouvoirs de

la raison beaucoup plus qu’un instrument optique quelconque n’a jamais

aidé le pouvoir de la vision”. Le temps qu’il indique est cinq ans, et il affirme

que sa méthode n’est en aucune façon plus difficile à apprendre que les

mathématiques ou la philosophie de son époque. De plus, il a dit de façon

répétée que, même dans l’état rudimentaire où il avait développé la théorie

lui-m ê m e , e l l e é t a i t r e s p o n s a b l e d e t o u t e s s e s d é c o u v e r t e s

m a t h é m a t i q u e s ; c h o s e q u e , p o u r r a i t-o n e s p é r e r , m ê m e P o i n c a r é

reconnaîtrait comme une preuve suffisante de sa fécondité. » [PM, 469]

14

Aussi surprenant que cela puisse paraître aujourd’hui, l’intérêt de Gödel

pour la question des fondements des mathématiques était, comme celui de

Hilbert, motivé fortement par la croyance que des progrès fondamentaux

dans ce domaine produiraient d’une certaine façon une révolution dans tout

le domaine des mathématiques (des mathématiques pures, en tout cas).

Cela n’est pas sans rapport avec la façon dont il comprend Leibniz. Dans

l’histoire de la logique, Leibniz est l’auteur d’un nombre considérable

d’anticipations et d’innovations conceptuelles et techniques qui font de lui

le véritable père de la logique moderne et qui ont été maintes fois

étudiées. Mais ce n’est pas cela qui est le plus important aux yeux de

Gödel. C’est plutôt le fait que Leibniz s’est attaqué au problème des

fondements d’une façon qui était susceptible de révolutionner et qui a

effectivement révolutionné les mathématiques elles-mêmes. Gödel pensait

que les progrès les plus décisifs dans le domaine de la pensée proviennent

toujours d’un gain réalisé dans la compréhension des choses les plus

simples et les plus fondamentales. Et on peut remarquer que c’est toujours

à des questions d’une espèce réellement fondamentale qu’il s’est lui-même

attaqué, avec les succès que l’on sait. Or, en ce qui concerne les effets qu’il

attendait de cela pour les mathématiques elles-mêmes, on peut constater,

comme le fait Wang, que le résultat a été plutôt décevant. « Le travail de

Gödel a eu, écrit-il, peu d’effet sur la pratique de la recherche et la

conception des mathématiques de la plupart des mathématiciens. De façon

surprenante, l’incidence la plus grande concerne davantage des questions

conceptuelles qui ont trait aux ordinateurs et à la mécanisation, qui sont

une préoccupation centrale de la technologie du moment. » [RKG, 168] Ce

n’est évidemment pas tout à fait ce dont rêvait Gödel. Il ne semble pas, en

15

tout cas, s’être intéressé personnellement au développement réel des

ordinateurs.

I « … nec tantum

obtinebunt, dum stabit

Mundus, sed etiam

obtinuissent si DEUS alia

ratione (…)

Wang note qu’e n c e q u i c o n c e r n e l e d é v e l o p p e m e n t d e l a l o g i q u e

mathématique il y a deux idées de Leibniz qui se sont révélées être d’une

importance centrale. La première est la caractérisation des vérités de

raison comme étant les vérités qui sont vraies dans tous les mondes

possibles. C’est, dit-il, une conception qui s’applique aussi bien aux

tautologies du calcul propositionnel, telles qu’elles sont comprises et

traitées par Wittgenstein dans le Tractatus, qu’à la notion plus générale de

proposition logiquement valide ou logiquement vraie dans le calcul des

prédicats du premier ordre. Il semble y avoir là, en fait, un malentendu

historique assez curieux, puisque Leibniz, à ma connaissance, n’a dit nulle

part littéralement que les vérités de raison pouvaient être définies comme

les vérités qui sont vraies dans tous les mondes possibles. Ce qui se

rapproche le plus de cette idée est sans doute les passages dans lesquels

il souligne que Dieu aurait pu assurément créer un monde pourvu de lois

physiques, mais pas de lois logiques et mathématiques, différentes. On

peut dire des vérités nécessaires, qui ont trait uniquement à l’essence et à

la possibilité, qu’« elles seront valides non seulement tant que le monde

subsistera, mais auraient été valides également si Dieu avait créé le Monde

d’une autre façon I » [OFI, 18].

16

Je ne sais pas qui a attribué le premier à Leibniz la paternité de la définition

de la vérité logique comme étant la vérité dans tous les mondes possibles.

Mais c’est un fait remarquable que les créateurs de la sémantique logique

ont présenté spontanément leur définition de la validité logique par la

vérité dans toute interprétation du système formel ou du calcul comme un

équivalent de ce que Leibniz devait entendre par la « vérité dans tous les

mondes possibles » : « Une classe de propositions dans [le langage] S1,

qui contient pour toute proposition atomique ou bien cette proposition, ou

b i e n s a n é g a t i o n , e t p a s d’autres propositions, est, explique Carnap,

a p p e l é e u n e “description d’état [state-description]”, parce qu’elle donne

évidemment une description complète d’un état possible de l’univers des

individus relativement à toutes les propriétés et relations exprimées par les

prédicats du système. De ce fait, les descriptions d’état représentent les

m o n d e s p o s s i b l e s d e L e i b n i z o u l e s é t a t s d e c h o s e s p o s s i b l e s d e

Wittgenstein. 1 » Cette transposition de la notion leibnizienne de monde

possible s’appuie évidemment sur une analogie réelle. Mais il y a également

une différence importante qui ne l’est pas moins. Une description d’état

carnapienne fixe simplement un comportement donné de tous les individus

du monde particulier dans lequel on se situe par rapport à toutes les

propriétés et relations dont il est question dans le système. Un monde

possible leibnizien est déterminé, en revanche, par l’existence d’une classe

d’individus qu’il ne partage avec aucun autre (un individu n’appartient

jamais qu’à un seul et unique monde possible) et qui sont tels qu’il peut

être reconstruit en totalité à partir du concept complet de n’importe lequel

d’entre eux. « Vrai dans tous les mondes possibles », au sens de Leibniz,

ne coïncide donc pas, c’est le moins qu’on puisse dire, avec « vrai dans

toutes les descriptions d’état », au sens de Carnap.

17

L’autre idée importante que les logiciens modernes ont pu trouver chez

Leibniz est l’insistance sur les « arguments formels », ou comme il dit les

« argumenta in forma », qui sont mécaniquement testables et, selon une

expression, que lui-m ê m e u t i l i s e , « infaillibles ». P a r l a n t d e l a

Caractéristique universelle, il écrit : « Les hommes trouveraient par là un

juge des controverses vraiment infaillible. Car ils pourraient toujours

connaître s’i l e s t p o s s i b l e d e d é c i d e r l a q u e s t i o n p a r l e m o y e n d e s

connaissances qui leur sont déjà données, et lorsqu’il n’est pas possible de

se satisfaire entièrement ils pourront toujours déterminer ce qui est le plus

vraisemblable. Comme dans l’arithmétique on peut toujours juger s’il est

possible ou non de deviner exactement le nombre que quelque personne a

dans la pensée sur ce qu’elle nous en a dit, et souvent on peut dire : cela

doit être l’un de deux ou de trois, etc. tels nombres, et prescrire des bornes

à la vérité inconnue. En tout cas, il importe au moins de savoir que ce qu’on

demande n’est pas trouvable par les moyens que nous avons. » [OFI, 26]

18

L’exigence de formalité a reçu une attention de plus en plus grande au

cours du XIXe siècle et elle a conduit finalement à la construction de

systèmes formels pour différents domaines majeurs des mathématiques.

Mais il a fallu attendre encore un peu plus, en fait jusqu’à la fin des années

1920, pour que la question qu’évoque Leibniz dans la dernière phrase, à

savoir celle de la complétude et de la décidabilité, formulée à propos des

systèmes formels eux-mêmes, soit posée explicitement et résolue. Ce qui

pourrait ressembler ici à une sorte de paradoxe est le fait que ce soit

précisément Gödel qui a contribué de la façon la plus décisive à tempérer ce

qu’on pourrait appeler l’enthousiasme leibnizien en démontrant un certain

nombre de résultats négatifs essentiels sur les possibilités des systèmes

formels. Dans tout cela, bien sûr, une incertitude demeure sur ce qu’il faut

entendre ici exactement par la notion de procédure formelle ou mécanique.

C’est seulement après la découverte de Gödel que Turing a réussi à clarifier

en 1936 ce que l’on veut dire lorsqu’on parle d’une procédure mécanique

19

ou d’un algorithme. Gödel a toujours considéré ce qu’a fait sur ce point

Turing comme une découverte majeure et exemplaire ; et on pourrait être

tenté de considérer qu’elle permet d’appréhender pour finir avec une

précision complète et définitive l’essence de ce que Leibniz entendait par

un « argument formel ».

Les historiens de la philosophie, toujours soucieux d’éviter les projections

anachroniques, diraient sans doute que ce qui est en question chez

Leibniz, lorsqu’il parle de procédures de décision qui opèrent uniquement

sur des symboles ou des combinaisons de symboles et qui peuvent être

appliquées de façon mécanique et infaillible, n’est pas tout à fait la même

chose que ce que l’on entend aujourd’hui par là et pourrait même être

sérieusement différent. Et il est probablement vrai qu’il faut résister à la

tentation de faire de Leibniz un formaliste ou un mécaniste enthousiaste et

naïf qui n’était simplement pas encore averti de ce que nous savons depuis

Gödel. Mais il faut remarquer que Gödel lui-même avait sur l’histoire des

concepts une idée qui n’est pas celle des historiens de la philosophie et

probablement pas non plus, du reste, la nôtre en général. Il pensait que,

dans ce cas-là comme dans beaucoup d’autres, Turing nous a seulement

permis d’accéder à une perception plus distincte d’un concept qui pouvait

très bien être déjà celui de Leibniz. Ce qui a changé n’est pas pour lui le

concept, qui était là depuis le début, mais la perception que nous en avons.

20

Il convient ici de souligner à quel point Leibniz aurait trouvé étrange la

séparation et même parfois l’incompréhension caractérisée qui semblent

s’être instaurées aujourd’hui entre la logique et les mathématiques.

C o n t r a i r e m e n t à c e q u’e s p é r a i t G ö d e l , b i e n d e s m a t h é m a t i c i e n s

contesteraient sans doute aujourd’hui que le théorème de Gödel ait quoi

que ce soit à voir avec les mathématiques proprement dites. Pourtant,

lorsque Gödel fut fait docteur honoris causa de l’université de Harvard en

1952, il fut présenté comme « le découvreur de la vérité mathématique la

plus importante du siècle », une manière de décrire ce qu’il avait fait qu’il

apprécia particulièrement. La façon actuelle de concevoir les relations entre

les mathématiques et la logique ne correspond évidemment pas beaucoup

à l’idée qu’il s’en faisait, mais elle correspond évidemment encore moins à

celle de Leibniz.

21

Je ne pense pas ici au fait que Leibniz a été traité souvent comme un des

grands précurseurs du logicisme, autrement dit de la doctrine selon laquelle

les mathématiques sont simplement une branche de la logique, mais plutôt

au fait qu’il considérait manifestement comme futile la volonté de faire

passer une ligne de démarcation stricte entre les mathématiques et la

logique. Dans les Nouveaux essais, Théophile se livre à une apologie si

convaincante du syllogisme que Philatèthe lui-même finit par lui dire : « Je

commence à me faire une tout autre idée de la logique que je n’en avais

autrefois. Je la prenais pour un jeu d’écolier, et je vois maintenant qu’il y a

c o m m e u n e m a t h é m a t i q u e u n i v e r s e l l e , d e l a m a n i è r e q u e v o u s

l’entendez. » [NE, 432] « Dans toutes les sciences infaillibles, écrit Leibniz,

lorsqu’elles sont démontrées exactement, sont pour ainsi dire incorporées

des formes logiques supérieures qui, pour une part découlent des formes

aristotéliciennes, pour une autre recourent en plus à autre chose. » [PS VII,

519] Il n’en est pas moins vrai que les règles du syllogisme, que Leibniz

compare à celles de l’arithmétique des petits nombres, sont les règles

élémentaires que l’on doit impérativement connaître avant de passer à des

règles d’inférence plus compliquées.

22

D’A r i s t o t e , q u i a e u l e m é r i t e é m i n e n t d e s o u m e t t r e l e s f o r m e s

syllogistiques à un petit nombre de lois infaillibles, il dit, d’une façon qui a

de quoi surprendre un lecteur habitué à voir les choses à la façon de

Descartes et de ses héritiers modernes, qu’il a été, de ce fait, « le premier

qui ait écrit mathématiquement en dehors des mathématiques » [ibid.].

Écrire mathématiquement en dehors des mathématiques voulait dire,

justement, écrire sur des sujets qui ne sont pas mathématiques, et

peuvent même être quelconques, sous forme d’argumenta in forma. « Il faut

savoir, écrit Leibniz, que par les arguments en forme, je n’entends pas

seulement cette manière scolastique d’argumenter dont on se sert dans les

collèges, mais tout raisonnement qui conclut par la force de la forme, et où

l’on n’a besoin de suppléer aucun article, de sorte qu’un sorite, un autre

tissu de syllogisme qui évite la répétition, même un compte bien dressé, un

calcul d’algèbre, une analyse des infinitésimales me seront à peu près des

a r g u m e n t s e n f o r m e , p a r c e q u e l e u r f o r m e d e r a i s o n n e r a é t é

prédémontrée, en sorte qu’on est sûr de ne s’y point tromper. » [NE, 425]

23

Savoir si la réunification doit s’effectuer finalement au profit de la logique

ou, au contraire, des mathématiques, c’est-à-dire de ce que Leibniz appelle

une mathématique universelle, a une importance qui est évidemment

beaucoup plus symbolique que réelle. Historiquement parlant, la raison

pour laquelle Leibniz ne peut songer à maintenir une distinction stricte

entre les mathématiques et la logique est assez claire. On a tendance à

concevoir les mathématiques comme une théorie qui fournit le moyen de

calculer sur des nombres (et éventuellement des objets d’une autre

espèce) et la logique comme une théorie qui s’occupe de formuler les règles

24

3. Le programme leibnizien et la question des

« limitations internes » des formalismes

d e l a d é d u c t i o n c o r r e c t e . M a i s , p o u r L e i b n i z , c e t t e d i s t i n c t i o n n’est

qu’apparente, puisqu’il est probablement le premier à avoir souligné

explicitement que toute déduction est un calcul et, inversement, que tout

calcul, lorsqu’il est réellement mis en forme, se présente comme une

déduction, ce que montre clairement la démonstration qu’il donne de « 2

+ 2 = 4 » dans les Nouveaux essais. Wang, qui fait référence au passage

que j’ai cité sur le syllogisme, note que « les exemples montrent que la

conception de Leibniz incluait (ce qu’on appelle aujourd’hui) le traitement

de données et les manipulations de symboles non numériques » [RKG,

263]. C’est tout à fait évident. Mais il faut ajouter que Leibniz montre aussi

comment un bon nombre de calculs non numériques, à commencer par celui

du syllogisme lui-même, pourraient être transformés assez facilement en

calculs numériques. Comme le remarque Wang, Leibniz et Hilbert avaient

déjà suggéré tous les deux de remplacer les concepts ou les expressions

par des nombres. Et on se demande parfois si Gödel s’est inspiré aussi de

Leibniz pour l’invention de sa technique de numérotation des symboles et

des expressions. Je ne connais pas vraiment la réponse. Mais ce qui est

clair est que ce qui est réellement nouveau chez Gödel n’est pas l’idée de

remplacer les concepts ou les expressions par des nombres mais le fait

d’avoir développé systématiquement cette idée et surtout de l’avoir

appliquée à la représentation de concepts et de relations syntaxiques

cruciaux comme par exemple la notion de démontrabilité elle-même,

autrement dit d’avoir conçu l’i d é e d’une arithmétisation possible de la

syntaxe.

Peu avant la fin de son article sur « La logique mathématique de Russell »,

Gödel se réfère à nouveau implicitement à Leibniz, lorsqu’il essaie de

répondre à la question de savoir si les axiomes des Principia Mathematica

peuvent être considérés comme analytiques. On pourrait, selon lui,

distinguer deux sens du mot « analytique » : « En premier lieu, écrit-il, il

peut avoir le sens purement formel selon lequel les termes qui

apparaissent peuvent être définis (soit explicitement, soit par des règles

qui permettent de les éliminer des phrases qui les contiennent) d’une

manière telle que les axiomes et les théorèmes deviennent des cas

spéciaux de la loi d’identité et que les propositions réfutables deviennent

des négations de cette loi. En ce sens, on peut démontrer que même la

théorie des entiers n’est pas analytique, pour peu que l’on exige des règles

d’élimination qu’elles permettent d’effectuer réellement l’élimination en un

nombre fini d’étapes dans chaque cas. » [PM, 467] La raison de cela est

que, comme on le sait depuis Turing, si ce genre de chose était possible,

cela impliquerait l’existence d’u n e p r o c é d u r e d e d é c i s i o n p o u r l e s

propositions arithmétiques. Si l’on admet des réductions infinies, avec des

propositions intermédiaires de longueur infinie (ce qui correspond à la façon

d o n t L e i b n i z s e r e p r é s e n t e l a d é m o n s t r a t i o n d e s p r o p o s i t i o n s

contingentes), alors on peut montrer que tous les axiomes des Principia

sont analytiques pour certaines interprétations ; mais la démonstration

exige, remarque Gödel, « la totalité des mathématiques telle qu’elle est

appliquée à des phrases de longueur infinie […], par exemple, on peut

démontrer que l’axiome du choix est analytique, mais uniquement si on

l’assume comme vrai » [ibid.].

25

Ce concept de l’analyticité au premier sens est clairement inspiré de l’idée

leibnizienne que le propre des vérités logiques et mathématiques et des

vérités de raison en général est d’être réductibles à des identités explicites

par une suite finie d’opérations consistant à substituer l’u n à l’autre la

définition et le défini dans une proposition. En même temps, il pourrait

s e m b l e r q u e c e q u e d i t G ö d e l i l l u s t r e a v a n t t o u t l e c a r a c t è r e

dramatiquement insuffisant des moyens qui, selon Leibniz, suffisent à la

démonstration de toutes les vérités nécessaires. Mais il y a, heureusement,

un deuxième sens, plus large, du mot « analytique », et dont on peut se

demander s’il n’est pas au fond, lui aussi, leibnizien et même peut-être plus

proprement leibnizien. C’est le sens auquel une proposition est dite

« analytique » si elle est vraie « en vertu de la signification des concepts

qui y figurent », cette signification pouvant être elle-même indéfinissable

(c’est-à-dire, irréductible à quoi que ce soit de plus fondamental). Gödel

accepte l’idée que les propositions mathématiques, y compris celles de la

théorie des ensembles, sont analytiques, si cela veut dire qu’elles sont

vraies en vertu de la signification des concepts qu’elles contiennent, mais

évidemment pas si cela veut dire qu’elles sont vraies en vertu de règles ou

de conventions concernant la signification des symboles. Il note que « cette

conception concernant l’analyticité rend à nouveau possible pour toute

proposition mathématique l’éventualité d’être peut-être réduite à un cas

spécial de a = a, à savoir si la réduction est effectuée non pas en vertu des

définitions des termes qui apparaissent mais de leur signification, qui ne

p e u t j a m a i s ê t r e e x p r i m é e d a n s u n e n s e m b l e d e r è g l e s

formelles » [Russell : PM, 468, note 33].

26

Cela semble à première vue peu leibnizien, puisque Leibniz exige de toutes 27

les propositions mathématiques (vraies), y compris les axiomes de l’espèce

usuelle, qu’elles soient réductibles à des identités explicites et le soient par

l’intermédiaire de définitions. Mais, bien entendu, il ne suggère pas que

nous disposons d’ores et déjà pour tous les cas des bonnes définitions,

celles qui nous permettraient d’effectuer réellement la réduction ; et il

n’exclut pas non plus forcément que nous puissions être obligés d’ajouter

indéfiniment de nouvelles définitions sans réussir à épuiser par là la

signification des termes concernés. Une définition, une fois qu’elle a été

obtenue, peut être utilisée dans le processus de réduction comme une

règle formelle, et c’est de cette façon qu’elle doit l’être. Mais rien n’est dit

par là sur la façon dont nous pouvons parvenir, en raisonnant cette fois à

partir de la signification, aux bonnes définitions et pas non plus sur la

possibilité que la signification ne puisse jamais, dans certains cas, être

épuisée par une liste quelconque de règles formelles.

Dans un texte de 1972, « Some Remarks on the Undecidability Results »,

Gödel propose ce qu’il appelle « une autre version du premier théorème

d’indécidabilité », qui prend la forme suivante : « La situation peut être

caractérisée par le théorème suivant : pour résoudre tous les problèmes du

type Goldbach d’un certain degré de complexité k, on a besoin d’un

système d’axiomes dont le degré de complication, à une correction mineure

près, est ≥ k (le degré de complication étant ici mesuré par le nombre de

symboles nécessaire pour formuler le problème [ou le système d’axiomes],

en y incluant, bien entendu, les symboles qui figurent dans les définitions

d e s t e r m e s n o n p r i m i t i f s u t i l i s é s ) . O r t o u t e s l e s m a t h é m a t i q u e s

d’aujourd’h u i p e u v e n t ê t r e d é r i v é e s d’u n e p o i g n é e d’axiomes simples

portant sur un très petit nombre de termes primitifs. Par conséquent, même

si ne doivent être résolubles que les problèmes qui peuvent être formulés

en un petit nombre de pages, le petit nombre d’axiomes simples que nous

utilisons aujourd’hui devra être complété par un grand nombre d’axiomes

nouveaux ou par des axiomes d’une grande complication. On peut douter

que des axiomes évidents en aussi grand nombre (ou d’une complication

aussi grande) puissent tout simplement exister, et par conséquent le

théorème mentionné pourrait être pris comme une indication de l’existence

de questions mathématiques du type oui ou non qui sont indécidables pour

l’esprit humain. Mais ce qui parle contre cette interprétation est le fait qu’il

existe des séries inexplorées d’axiomes qui sont analytiques en ce sens

qu’ils ne font qu’expliciter le contenu des concepts qui y figurent (par

exemple les axiomes de l’infini dans la théorie des ensembles), qui

assertent l’existence d’ensembles de cardinalité de plus en plus grande ou

de types transfinis de plus en plus élevés et qui ne font qu’expliciter le

contenu du concept général d’ensemble. Ces principes montrent qu’un

nombre toujours plus grand d’axiomes (et d’axiomes toujours plus

compliqués) apparaît au cours de l’évolution des mathématiques. Car, ne

serait-ce que pour comprendre les axiomes de l’infini, on doit d’abord avoir

développé dans une mesure considérable la théorie des ensembles. » [CW

III, 306 ; cf. Cantor : PM, 476-7]

28

Un équivalent de cela, dans la conception que Leibniz a de la situation,

serait peut-être le suivant. Supposons que, comme nous devrions en

théorie le faire d’après lui, nous n’acceptions comme axiomes, au sens

strict, que des propositions qui ont la forme d’identités explicites, partielles

ou totales. Dans ce cas, toute la créativité et la capacité de décision du

système se reportent sur les définitions elles-mêmes. Et nous pouvons être

a m e n é s , b i e n e n t e n d u , à a d o p t e r u n n o m b r e d e p l u s e n g r a n d d e

définitions et de définitions de plus en plus compliquées pour les termes

utilisés. Une fois adoptées, ces définitions viendront s’ajouter dans les

déductions, comme des vérités primitives supplémentaires, aux axiomes du

système. Mais il est essentiel de remarquer que, pour Leibniz, même si elle

est utilisée du point de vue formel comme une convention d’abréviation,

une définition comporte toujours initialement une assertion implicite de

possibilité. Gödel dit que les axiomes mathématiques, même s’ils sont

analytiques, doivent avoir un contenu réel, parce que « l’existence même

du concept de “classe”, par exemple, constitue déjà un axiome de cette

sorte ; puisque, si on définissait, par exemple, “classe” et “∈” comme étant

“les concepts qui satisfont les axiomes”, on serait incapable de démontrer

leur existence » [Russell : PM, 468, 33n]. On peut faire une constatation du

même genre à propos des définitions leibniziennes, puisque ce qui

correspond pour les concepts à l’existence pour les individus – à savoir la

possibilité (ou, comme dit aussi Leibniz, la vérité) du terme considéré – y

est impliqué.

29

Sur la question de la vérité des axiomes, Gödel dit en fait deux choses à

première vue très différentes, dont on peut se demander si elles n’ont pas

aussi un équivalent chez Leibniz. « Il peut, écrit-il, y avoir des axiomes qui

abondent à un point tel dans leurs conséquences vérifiables, qui jettent

t e l l e m e n t d e l u m i è r e s u r u n d o m a i n e e n t i e r e t q u i f o u r n i s s e n t d e s

méthodes tellement puissantes pour résoudre les problèmes (et même

pour les résoudre de façon constructive, pour autant que c’est possible)

que, quoi qu’il en soit de la question de savoir s’ils sont ou non

intrinsèquement nécessaires, ils devraient être acceptés au moins dans le

30

même sens que n’importe quelle théorie physique bien établie. » [Cantor :

PM, 477] Autrement dit, Gödel reconnaît volontiers, à côté de l’intuition

mathématique, l’existence et l’importance d’un autre critère, que l’on peut

qualifier de « pragmatique », pour la vérité des axiomes. La même dualité

se retrouve certainement de façon typique chez Leibniz, avec d’un côté

l’idée que tous les axiomes devraient en principe pouvoir être réduits par

l’analyse des concepts à des identités explicites, qui constituent les seules

propositions qui soient absolument certaines et évidentes, et de l’autre le

pragmatisme en ce qui concerne la question de l’acceptabilité des axiomes

dans la pratique réelle du mathématicien. Une bonne partie des axiomes

qu’utilisent les mathématiciens appartiennent, pour Leibniz, à une catégorie

intermédiaire : ce ne sont pas des identités explicites, ils n’ont pas de

nécessité intrinsèque qui puisse être aperçue clairement ou rendue

manifeste par la seule analyse des concepts qu’ils impliquent, et ils ne sont

justifiés, pour l’essentiel, que de la deuxième des façons que distingue

G ö d e l . L e i b n i z e s t , p o u r r a i t-on dire, un praticien beaucoup trop

remarquable en mathématiques pour trouver cette situation anormale ou

inquiétante. Mais il y a un point sur lequel il est certainement beaucoup plus

optimiste que nous ne pouvons nous permettre de l’être aujourd’hui. Il

pense que tous les axiomes authentiques possèdent par essence ce que

Gödel appelle une nécessité intrinsèque, et que nous devrions pouvoir en

principe la découvrir. Que nous ne l’ayons pas fait jusqu’ici pour certains

d’entre eux, sur la vérité desquels il n’y a en pratique aucun doute

raisonnable, ne menace, bien entendu, en aucune façon la solidité de

l’édifice mathématique. Mais il n’en est pas moins vrai que nous ne devons

pas renoncer à essayer, et pouvons même a priori être certains que c’est

possible, sans quoi on ne saurait tout simplement pas ce qu’on veut dire

quand on dit des axiomes en question qu’ils sont vrais.

J’ai évoqué plus haut la tentation que l’on pourrait avoir, et que l’on a

parfois, de considérer Leibniz comme un formaliste et un mécaniste naïf qui,

d’une part, fait preuve d’un optimisme tout à fait excessif (de notre point de

vue) à propos de ce que l’on peut espérer dans ce domaine et, d’autre

part, ne semble pas suffisamment attentif au risque de trivialisation

complète que semble comporter la perspective d’une formalisation complète

des mathématiques. Du point de vue historique, il est curieux de constater

que, si la complétude syntaxique de l’arithmétique formelle (l’existence,

pour toute proposition, d’une démonstration ou bien de la proposition ellemême,

ou bien de sa négation, dans le système formel concerné) était

attendue par beaucoup de gens, la décidabilité, en revanche, ne l’était pas,

en dépit du fait qu’elle en constitue bel et bien une conséquence logique (la

complétude sémantique, en revanche, n’implique évidemment pas la

décidabilité). De toute évidence, la décidabilité était considérée souvent à

l’époque comme une propriété plus forte que la complétude (Wang voit là

un bon exemple du fait que les croyances ne sont pas fermées par rapport

à la relation de conséquence logique). Il a fallu attendre l’article fameux de

Turing auquel j’ai fait allusion plus haut pour que l’on prenne conscience du

fait qu’un système formel complet est également décidable, puisque, si p ou

sa négation sont démontrables dans le système, une énumération de

toutes les suites de formules qui constituent des candidats possibles au

statut de démonstration de p ou de non-p doit nécessairement se terminer

à un moment donné par l’indication d’une suite de l’une ou de l’autre

espèce qui fournit la réponse à la question posée. Comme l’ont fait

remarquer après coup les historiens de la logique, il est probable que, si on

avait su cela dès le début, on aurait été beaucoup moins enclin à espérer

et un peu plus à redouter la complétude, puisque son existence, si elle

avait été réelle, aurait impliqué celle d’une procédure mécanique qui

garantit la possibilité, au moins en principe (autrement dit, à condition

d’être prêt à attendre suffisamment longtemps), d’obtenir, même pour une

proposition apparemment aussi « résistante » que, par exemple, le

théorème de Fermat, une démonstration de la proposition ou de sa

négation.

31

Leibniz était certainement convaincu d’avoir conçu un système dans lequel il

existe, pour toute proposition nécessaire, une démonstration ou une

réfutation de la proposition, dans un sens qui correspond déjà à la

conception « formelle-computationnelle » q u e n o u s n o u s f a i s o n s

aujourd’hui de la nature de la démonstration. Mais il ne semble pas avoir

jamais perçu ce que nous appellerions la complétude (syntaxique) de son

système comme une chose qui pourrait menacer en quoi que ce soit la

liberté et la créativité des mathématiques. Cela n’a rien de surprenant, si

l’on considère l’idée que l’on se faisait encore le plus souvent, à la fin des

a n n é e s 1920, d e s r e l a t i o n s q u i e x i s t e n t e n t r e l a c o m p l é t u d e e t l a

décidabilité. Et surtout, même s’il pouvait exister un système formel complet

pour les mathématiques dans leur ensemble, on peut penser qu’il y aurait,

de toute façon, encore une différence essentielle à faire entre savoir a priori

que le système contient nécessairement une démonstration ou une

réfutation de la proposition et être capable de trouver effectivement l’une

ou l’autre. Leibniz semble tout à fait étranger à la crainte que suscite

e n c o r e s o u v e n t l e s p e c t r e d e l a f o r m a l i s a t i o n c o m p l è t e e t d e l a

mécanisation, et il ne pense pas du tout que les droits et les privilèges de

32

ISSN électronique en cours d’attribution

Plan du site – Contact – Crédits – Flux de syndication

Nous adhérons à Revues.org – Édité avec Lodel – Accès réservé

l’imagination mathématique aient réellement quelque chose à craindre de

lui. La découverte d’une procédure de décision « mécanique » ou, en tout

cas, mécanisable pour les mathématiques lui semble constituer avant tout

une des conquêtes les plus précieuses dont puisse rêver l’esprit humain, et

non le genre de dépossession ou d’humiliation dramatiques (Freud dirait

probablement de « blessure narcissique ») a u q u e l o n a t e n d a n c e à

l’identifier lorsqu’on pense que le rôle de l’esprit deviendrait, du même

coup, secondaire et même négligeable. Et il ne semble même pas gêné par

la perspective de l’existence d’une procédure du même genre qui pourrait

être appliquée non plus seulement à l’art de démontrer, mais également à

l’art d’inventer lui-même.

Ce n’est pas seulement, me semble-t-il, parce qu’il ignore encore des

choses essentielles que nous avons apprises depuis, en particulier grâce à

Gödel. C’est aussi parce qu’il a une appréciation plus saine que beaucoup

de nos contemporains de ce qu’est la situation réelle (j’entends par là des

risques, des gains et des pertes réels qu’implique, de façon générale, la

mécanisation des tâches intellectuelles) et parce qu’il est, pour sa part,

également à l’aise et également incomparable dans deux tâches entre

lesquelles il ne perçoit aucune incompatibilité et que personne aujourd’hui,

pour des raisons que l’on comprend aisément, ne semble plus capable de

mener de front : celle de la reconstruction et de la systématisation

logiques, et celle de la création mathématique proprement dite.

33

I « … nec tantum obtinebunt, dum stabit Mundus, sed etiam obtinuissent si DEUS

alia ratione Mundum creâsset.

Notes

1 Rudolf Carnap, Meaning and Necessity. A Study in Semantics and Modal Logic,

The University of Chicago Press, Chicago/Londres, 1956, p. 9. (Signification et

nécessité, traduction par François Rivenc et Philippe de Rouilhan, Gallimard, Paris,

1997, p. 58.)

Note de fin

Référence papier

Jacques Bouveresse, « Utopie et réalité : Leibniz, Gödel et les possibilités de la

logique mathématique », in Essai V – Descartes, Leibniz, Kant, Marseille, Agone

(« Banc d’essais »), 2006, p. 141-165.

Référence électronique

Jacques Bouveresse, « Utopie et réalité : Leibniz, Gödel et les possibilités de la

logique mathématique », in Essai V – Descartes, Leibniz, Kant, Marseille, Agone

(« Banc d’essais »), 2006, [En ligne], mis en ligne le 11 mars 2009, Consulté le 21

décembre 2009. URL : http://agone.revues.org/index216.html

Pour citer cet article

© Agone

Droits d’auteur

Source : Agone. Revue.org

IDEES ET DEBATS CONTEMPORAINS

Posted in Philosophy on April 15, 2010 by saiigain

De la philosophie contemporaine : Dialogues entre un profane et des philosophes universitaires

Confrontation d’idées au tour d’un texte thématique intitulé : NOTIONS / Peuples et Religions

 En guise d’énumération, histoire de fe(i)ndre le concret

Les différentes communautés religieuses des 3 monothéismes Comme nous l’avons fait remarqué dans un précédent article en nous appuyant sur les écrits d’un historien israélien anti-sioniste Shlomo Sand : Il n’y a pas UN peuple juif, il n’y a pas de peuple juif. Le peuple ainsi entendu est un leurre : qu’y a-t-il de commun entre des Juifs d’Ethiopie, des juifs yéménites, des Sépharades, des Rhadanites, des Khazars (anciens nomades turcs convertis au judaïsme), les Hébreux noirs actuels qui souaitent se distinguer des juifs noirs d’Amérique, sinon la lecture d’un livre comme la Torah ? Pour les différentes branches du judaïsme, précisons qu’il s’agit d’un judaïsme talmudique ou rabbinique basé non seulement sur la lecture de la Torah mais l’interprétation des différents Talmud qui sont autant de lois morales. En plus du judaïsme talmudique, il existe le judaüsle karaïte qui essaya lui de se greffer directement sur l’histoire des Khazars. Si certaines de ces communautés refusent le Talmud, nombre de chrétiens qui admettent la bible refusent les encycliques papales. Nous allons y revenir tout celà pour dire que derrière la “vérité” d’un prophète, il y a toujours tout une série de courants cléricaux qui par leurs écrits se revendique de la parole du prohète qui lui n’écrit jamais. Cette dégénérescence de la “Vérité” en des “Lois” morales avant tout, se retrouve dans le mode transcendant de la philosophie avec Platon qio détenant la vérité socraitque énonce ses lois morales pour la cité. Pour les musulmans aussi, ils s’accordent sur le coran et les écrits abrahamiques falsifiés mais non pas sur le corpus des hadiths qui constituent la loi islamique (charia). Mais comme chez les autres momnothéismes il y a des divergences, cela ne fait pas de doute un prophète a toujours des problème d’héritage. Il est alors difficile de parler de peuple musulman quand on sait qu’il existe parmi ceux-ci des berbères (d’abord convertis au judaïsme puis à l’Islam et qui envahirent l’Espagne comme le montre la relation d’Avéroès et Maïmonide), des arabes et des turcs qui comme les Khazars résistèrent longtemps à la poussée arabe. Pour le dire en d’autres termes Sunnisme, Chiisme, Ibadisme (Oman, Djerba, certains Berbères), Druzes (Chiites du sud du Liban qui descendent de l’Ismaélisme), Alévites et Soufites de Turquie ne sont pas des histoires de clochers mais de minarets. Les muslmans reconnaissent les écrits des différentes religions abrahamiques mais considèrent leur écrits comme falsifiés par le temps : le Suhuf-i-Ibrahim (les Feuillets d’Abraham), la Tawrat (le Pentateuque ou la Torah), le Zabur de David et Salomon (identifié au Livre des Psaumes) et l’Injil (l’Évangile). Au Coran et au Hadiths ils ajoutent deux autres sources littérales à l’islam (l’unanimité (ijma’) et l’analogie (qiyas). Petit rappel, pour les chapelles, pensera christianisme latin, copte, orthodoxe, charismatique, aux protestantismes luthérien, calviniste, baptiste, méthodiste, memonnite et évangélique pour ne citer qu’eux… Pour les différentes éthnies on se rappelera… …les mises en garde d’Etienne Balibar face au retour d’éthnicité de ces vingt dernières années pour dire que les nations pas plus que les peuples n’ont des “origines éthniques” (cf. Race, nation, classe, les identités ambiguës). …Les notions de “race” et d’ “éthnies” sont désastreuses de même que celle de peuple est douteuse par avance. Nous avons déjà attaqué la notion de peuple et montrer combien cette critique relève d’un anti-humanisme que l’on retrouve chez Foucault et Althusser. Sous le vocable de peuple, on se sert en quelque sorte de la crédulité et de la moralité des citoyens pour les désarmer de leur puissance. On les réarme en les tirant au sort dès lors que des textes ou des aristocrates de la République sont là pour tenir la lettre de notre mémoire collective. Rappelons le traité de la constitution française, qui correspond à un régime représentatif plus qu’affectif. Ce qui est nommé peuple est d’emblée trahi alors que comme le diront certains philosophes c’est un peuple à venir (comprenez une nouvelle affectivité) qui est appelé par les créateurs. Le prétendu peuple et tout ce que l’on range sous cette forme de passivité est spolié par ses représentants, qui tot au tard se reproduisent en corps d’élite et en dynastie de gouvernants. Les tirés au sort doivent se protéger des services secrets et des sociétés secrètes qui n’oeuvrent pas pour le développment des infrastructure mais fomentent des prises de pouvoir ou des dissentions. Qui oeuvre pour le développement réel de l’économie n’a pas à se cacher. C’est peut-être là l’une des plus grandes subversions. Par Anthony – Publié dans : Lexiques et notions – Communauté : La commune des philosophes Profane (se prononçant sur le contenu du texte) : -Bonjour, Celà dit, il me semble en tant que lecteur profane et amoureux de la philosophie que les propos qu’il renferme sont biaisés en partie en raison des orientations idéologiques et preconçues de ses intervenants mais aussi des affirmations gratuites que l’on reprend à son compte sans pour autant faire une analyse critique et philosophique du sujet.Par ailleurs, j’ai l’impression que certain nombre d’amalgames y regnent. Je crois savoir qu’il faille distinguer les limites raisonnables de la sphère sociologique de celle idéologique et theologique;Ne point confondre le religieux d avec le politique. Le denominatif de “peuple” dont il est question peut sembler equivoque.Toutefois, lorsqu’on analyse de près sur un plan historique et religieux, le voile se dissiperait.Au terme “peuple” peut se substituer la notion de “groupements humains” ayant des valeurs socio-religieuses car n’oubliant pas que l’homme est avant un etre fondamentalement religieux. Et Le fait de partager des valeurs communes a la fois sociologique, humaines, humanistes,spirituelles,religieuses ensemble en plus de la forme de société adoptée par le groupement humain avec ses symbolismes specifiques constituent une ebauche de la notion de “peuple”. Le Livre révélé des juifs est un concentré de valeurs communautaires notamment spirituels.le simple fait qu’ils aient ce livre en partage avec des enseignements de source judaique passe pour les unir suffisamment pour s’estimer peuple. Par ailleurs, vous entretenez un amalgame du religieux et du civilisationnel. Vos propos sur l’islam,dans une moindre mesure le christianisme et le judaisme sont sujets à caution.Ils necessitent une étude approfondie de votre part.Vous soutenez des affirmations sans avances des preuves palpables et d’exemples concrets et d’autorité suffisante.L’islam n’est pas que de religion.C’est un principe, une notion, une spiritualité, une loi, un mode de vie, un concept de vie, un ensemble de principes de vie de source divine, un ensemble de cultures et données sociologiques sur les us et coutumes d’un groupe de communautés. Donc, restreindre l’islam comme vous le faites dans cette optique, c’est perdre de vue tout un pan de la civilisation islamique. Meme si la notion de peuple musulman ou islamique est incoherente car c est une religion, une civilisation, l islam qui en appelle aux autres à adhérer à ces principes de paix, de cohesion, de modes de vie.Il y a lieu de faire une distinction entre les notions de peuple, communauté, groupement humain, etc Philosophe(s)(s’exprimant sur les arguments avancés) : -Je me permet de repondre à votre élégante rhétorique du “oui mais”. Comme vous pouvez le lire dans nos post nous ne pratiquons ni l’analytique ni la dialectique en premier ressort. Faire de l’Islam une civilisation, c’est confondre car si je ne m’abuse le premier pilier de l’Islam est religieux : c’est la profession de foi qui dit qu’il n’y a que le Dieu abrahamique et que mahomet (le législateur moral) est son prophète. Le second est religieux : la prière. Le jeûne de purification le mois du Ramadan est aussi un précepte religieux ainsi que le cinquième pilier qui consiste à faire le pélerinage à la Mecque en raison du premier précepte. Il n’y a que la Zakat (l’aumôn à hauteur du dixième de ses revenus) qui ne soit pas religieux. Mais j’ai du mal à voir l’islam autrement que comme une religion. L’Islam n’en appelle pas toujours à la paix, de même que la chrétienneté papale pouvait en appeler aux croisade. Mahomet fut un conquérant et un grand juge moral. Mais si vous pensez à l’islam comme on a pu pensé à la Chrétienneté alors l’Islam est aussi une civilisation puisqu’elle repose sur des préceptes moraux. Qui plus est vous êtes vous même pris dans des aspect idéologiques qui sont un ensemble de préjugés moraux, socaux et religieux. Ce que vous ne semblez pas voir c’est qu’au peuple qui bon dos (au vu de tout ce que l’on peut raconter sur son compte) on adjoint toujours le principe de souveraineté. C’est cela que nous remettions en cause. Le clérical et la souveraineté, bref l’esprit de troupeau. Mais bien entendu nous pourrions parler de “peuplements humains” mais cela me semblerait mijoré et eviter la conception PROFANE dont vous parliez. Quant à savoir si l’idéologie énoncée ici est profane ou paienne, ne jugé pas trop vite. Profane (répondant aux critiques des philosophes) : -Cela se voit que vous savez peu de la religion islamique;Chose qui tend à affirmer mes propos d’avant.J’ai bien l’impression que vous caricaturez egalement la religion islamique.Si vous le savez pas, l’islam n’est pas que de religion.Il passe pour etre une civilisation egalement.Ceci est confirmé par les ecrits et les etudes d’islamogues tels Ramadan Tariq.D’ailleurs, le dictionnaire fait une difference nette entre l’islam, qui est la religion, et Islam qui fait reference à la notion de Civilisation Islamique. Sachez aussi que l’islam ne se limite pas uniquement aux piliers sus cités.Il y a en effet d’autres articles de foi tout aussi importants que ceux annoncés. Philosophes (répliquant aux critiques précédents) : -Vous vous répétez, la civilisation islamique comme la civilisation chrétienne ont une base religieuse, je n’ai fait qu’énoncer quatre des cinq piliers. Ensuite qu’une morale soit associée à une religion et qu’au final cela fixe une civilisation est dans le cours des choses. Mahomet entre deux conquêtes et ses trois femmes rendaient des jugement moraux devant la communauté, ce sont ces jugements moraux qui forment les Haddiths, et c’est dans ces lois qui suivent le texte prohéptique (Torah, Bible ou Coran) qu’une religion est attaquable, parce qu’elles sont des domptage de l’énergie. Quant à Tariq Ramadann a un discours de prêtre (oh oups d’imam), pour justifier la pratique de l’islam dans la république. Si cela peut permettre aux musulmam de mieux s’accorder dans la socité tant mieux, mais je ne crois pas que cela qe limite à cela, car il pratique comme tout prêtre ) l’exemple de Badiou le double discours. A part cela vous avez une vie limité sur ce que je pense de l’Islam. Mais je continu à m’attauqer au théologico-politique dont Tariq Ramadamn n’est pas loin, je pense à sa proximité avec les frère musulman. Mais à chacun sa liberté de croyance. Profane (argumentant contre les positions des philosophes) : -La « civilisation occidentale » parait inseparable de ses flancs religieux pour ainsi dire chrétiens. L’histoire nous eclaire suffisamment sur les liens de la chretienté,donc de l influence considerable de la religion,sur les fonds baptismaux de la civilisation occidentale sans oublier l apport de la sagesse et de la science de la periode d’or de l’islam,l’époque médiévale. Je n’ai pas l’impression de me repeter,mais plus de vous rappeler au mieux faire une mise au point. Je ne cite Ramadan que par rapport aux contenus intellectuels de ses ouvrages connus sur l islam. Je juge de rien par rapport à ses affiliations ou influences religieuses.Critiquer les idées et non les personnes,voila l esprit de la philosophie. -Bref il a des idées de prêtre🙂. Mais je n’ai pas envue de me lancer dans l’étude de son double discours🙂. Cette chose est assez fastidieuse, pour l’avoir fait chez d’autres imposteurs, car à la base il n’est pas imam. De la philosophie contemporaine : Dialogues entre un profane et des philosophes universitaires Débat d’idées autour de la thématique de la philosophie post-moderne : L’ Après Einstein et le Devenir des systèmes de pensées philosophiques Profane (débutant l’analyse) : -Tout d’abord, Je vous souhaite de continuer sur cette lancée dynamique de la reflexion philosophique.Celà dit, une grande partie de la problematique de votre sujet est attrait à l’histoire de la philosophie et de ses rapports avec la science postmoderne.Il faut dire que la notion de dualité qui a jalonné la reflexion philosophique Pensée-étendue,corps-esprit,matiere-vivant etc meme si elle porte en elle une certaine ambivalence traduise ,n est ce pas,la dynamique meme de la pensée philosophique.Elle permet par l’opération de synthese justement qui permet une certaine ouverture par rapport à la problématique et permet d’aller au delà de celle ci et aborder un aspect plus pertinent du probleme.La notion de synthese passe pour depasser la portée specifique du sujet à traiter.Meme si la dialectique a ases limites, il n’empeche qu’elle permet une certaine appreciation notamment critique et permettant par là une synthèse plausible des faits. Il n ‘y a point de doute que la pensée quantique si je peux la nommer ainsi à contribuer à apprehender une nouvelle realité au delà de la simple vision stationnaire ou du repos de la matiere fusse t elle inerte ou pas.Je tiens toutefois à rappeller et selon l’interpretation relative de la pensée critique de kant que les limites de la raison passent pour etre intrinsèques.La raison a ses limites propres au delà desquelles l’esprit divague, se complait dans l’abstrait et l’absurdité manifeste; Pour ce qui est du devenir de la philosophie, son histoire nous enseigne et celà ne date pas seulement des philosophies socratiques ou post-socratiques qu’elle a toujours été jalonnée par 4 courants principaux de pensée:L’idéalisme,le materiaslime,le scepticisme, et ce que certains nomment le mysticisme; Toute la phenomenologie de la pensée humaine se situe dans ce cadre.L’Esprit humain a tres souvent sinon toujours referé à l’un ou l’autre de ses courants pour mener sa reflexion critique elle basée sur les fondements, les pre supposés, les axiomes, les verités non prouvées passant pour universelles .Comme l’on dit il faut bien partir d’une supposition logique et raisonnable pour jeter les bases d’une reflexion nourrie meme si celle ci passe pour etre admise;Autrement, c’est un enchainement sans fin de causalité, de cause,principe, consequence à l’infini.Il est de forte chance que l esprit humain soit circonscrit à ces differents courants de pensée.Les nouveaux concepts philosophiques ou jugés comme tels ne semblent rien decrire de nouveau. Ils ne font qu’interpreter l’impression de realité, ils ne font qu’une epistemologie de la science;La science semble bien prolonger de nos jours la reflexion philosophique.Bien sur face à de nouvelles realités comme celles du monde quantique, il faille inventer des termes, des notions, des paradigmes nouveaux, voire un nouveau jargon philosophique mais en grande partie, tout ceci est attrait à la dimension philosophique par leurs versants abstraits. La philosophie ne pretend pas apporter une vision fidèle de la realité, elle l’interprète.Elle a aussi ses limites apparemment tout comme la raison . La notion de perception, les nouvelles théories des cordes multiples qui decoulent de la physique quantique depassent largement le cadre de la relativité restreinte.Elles debouchent sur ce que j’oserai appeler”l’illusion du vrai”.Non seulement leur interpretation deborde la reflexion philosophique ou se limite a peine a l’entendement, mais elle depasse la notion de ce qui nous semble etre “reel” et une interpretation par notre cerveau de ce reel, la perception.Elle parait etre la victoire apparente de l’imagination sur l’esprit philosophique tant ses ambitions sont divines puisqu’elles pretendent à une theorie finie de la nature. La théorie du tout,but ultime des sciences notamment de la matière et du vegetal.Les structuralistes ont apporté une vision pertinente de l’impact des superstructures sur notre perception de la realite, de ce qui est, ainsi que du réel.Toutefois, leur reflexion est limitée dans la durée.Vous pouvez lire l’ouvrage “Le Begaiement des Maitres”, ouvrage qui souligne les limites mieux les insuffisances de la pensée de foucout notamment et Deleuze.Il y a lieu d’elargir le cadre de la philosophie, de depasser la dialectique et d’apprehender de nouvelles realités par la pensée;Et ceci passe par l’acception d’une nouvelle regle de logique differente de celle d aristote ou de celle boolienne. Nous devons jeter les fondements d’une nouvelle logique basée sur des suppositions admises comme telles et en accord avec le bon sens comme le soutiennent les theories des lignes paralleles. Philosophes (appréciant l’analyse commentée) : -Merci de ce commentaire. Mais qui vous dit que la théorie du tout est le but ultime de la science, il n’y a pas d’unification possible de régime de pensée si différent; C’est une simple vue de décadent. Pensez à Charpak, Feynmann, Tesla, Maxwell et bien d’autres.Je prolongerai mon commentaire plus tard. Réponse de Anthony(de la Commune des philosophes) Profane (éclairant son argumentation) : -Il n’est pas un secret pour ce qui s’y connaissent que la science a toujours cherché à connaitre une theorie unifiée des lois fondamentales de la nature.D’ailleurs, Ralph Waldo Emerson, ne disait il pas que all sciences have one aim, namely, to find a theory of nature.Donc, depuis les debuts de la philosophie, aux theories de l’alchimie,jusquà la theorie des multiples cordes en astrophysique, il n’est pas rare de constater de telle observation.Mais parfois,il faut savoir se rendre aussi à l’evidence.Il y a loin de la coupe aux lèvres. Philosophe(s)( rejetant des arguments avancés) : -Contre vérité flagrante, la science Grecque, qui est à l’origine de la science moderne (toutes deux partant de l’astronomie plus que de l’étude des océans) ne chercait pas une theorie unifiée des lois fondamentales: Pensez à l’éspitémè de Platon et Aristote.La théorie des cordes étant à une échelle infinitésimale retombera comme la théorie démocritéenne des atome toujours sur ses pattes, mais c’est de la foutaise thjéorique que de partir d’une équation d’Escher. Réponse de Anthony Profane (argumentant contre les thèses avancées par le camp adverse) : -Vous pretendez que les philosophies n’ont point eu l’idée ou la pretention de se frotter à la theorie pretentieuse du tout.Pourtant, bien de penseurs se sont exprimé sur cette theorie du “TOUT”.Du penseur americain Ralh Waldo Emerson, avec notamment sa fameuse citation”all sciences have only one aim, namely, to find a theory of nature”, à Stephen Hawkings: Stephen Hawking: « […]L’ultime but de la science est de fournir une théorie unique qui décrive l’univers dans son ensemble. […] […] je pense qu’il y a de bonnes chances pour que l’étude de l’univers primitif et les exigences de la logique mathématique nous amène à une théorie complètement unifiée durant la vie de certains de ceux qui nous entourent aujourd’hui, […] Cité dans: Jaffelin, Jacques, Le promeneur d’Einstein, Méridien et cerf, 1991. p.86. D autres auteurs dont j’en passe se sont exprimé en faveur de cette thèse également.. Pretendre que la science, ou la philosophie n a jamais eu cette idée ou pretention d’aborder la theorie du tout que certains referent à a la theorie unifiée serait contre verité . Philosophe(s)(prenant le contre-pied des arguments avancés ci-dessus) : -Ce sont tous des scientifique post-galiléléens. Du fait de la rupute de symétrie. Je vous les donne.La brisure spontanée de symétrie qui casse tout cohérence. http://paris8philo.over-blog.com/article-3959720.html La sicence chez les Grecs : http://www.paris-philo.com/article-6036000.html La science énonce-t-elle des certitudes http://www.paris-philo.com/article-6255707.html (un texte de Carlo Rovelli) La théorie du tout est une chimère, dans le cas contraire il n’y aurait lus rien à chercher, pourtant il y a des scientifique qui partent de Tesla, d’autres qui étudie les colles, d’autres les réseau cristallin. Mais tout ceux qui veulent mettre le réel en opération (j’insiste suer le terme opération et non équation) sont des décadent. Au contraire de philosophes comme Bergson, Sartre ou Marx qui pône une forme de contingence radicale qui resiste au déterminisme. Que faire dans tout ça de la vie. Surtout s’il n’y a pas de matière. La seule dimension d’esprit (l’instance humaine croit agir la matière) est l’audacve raisonné. Mais l’audace procède par brèche, par avancée, non par arrasement, par conciliation de tout ce qui dépasse entre les diverse théories inconciliables. Tesla ou Edison qui se moquaient pas mal de la Théorie du tout ont bien plus apporté à la sicence, quant à Hawking il n’a rien découvert sinon qu’il a vulgarisé les apories de la thoéorie de la rélativité. Reste l’hypothèse de micro trous et une belle approche de la mais il y a chez lui un côté illusioniste. Au passage la symétrie est une vue e l'”esprit” une certain configuration du cerveau à la percevoir, propre à des têtes maniaques. Maisi l y a une chose que je vous accorde c’est qu’à pratiquer de l’alchimie, à chercher la théorie sur tout ou finit par découvrir tout autre chose : les scientifiques (ceux de la science qui met en équation les relation constantes) dans nombre de cas sont des décadents, des hommes partiels n”ont des guerriers car il pense que la réalité peut être mise en opérations. C’est très différents des expérimentateurs comme Feynmann ou Tesla ou des géomètre pratique comme Monge. Pour en revenir aux théories du Tout : Simplement le domaine de validité des théories tient à une époque ou à un domaine de pertinence comme par exemple les théories qui posent la matière (alors que la masse de l’univers que nous maîtrisons sous le terme de matière n’est que de 5%, dans les 95 % qui restent peut-être peut-on y placer les neutrinos qui sont trop furtifs à notre empire). Le Tout est une chimère métaphysique de ce qui n’expériemente pas la science. Réponse de Anthony -Profane (répondant aux critiques des philosophes) -Il semble que vous y connaissiez,cher(s) ami(s) en théories physiques et en epistemologie(reflexion philosophique sur la science) voire a l’histoire des idées que cela soit par vos propres acquis ou via des recherches sur la toile. Aussi, je ne puis vous traiter de manquer de science voire de sagesse.Mais une chose que je semble constater ce que vos reflexions ne semblent point porter la marque d’un effort personnel critique.Vous semblez reprendre à vos comptes des affirmations et des idées toujours sujettes à caution chez les philosophes contemporains et grands epistemologues du moment.Les penseurs cités tels Bergon qui ont été de grands esprits critiques ont mis en place une forme genereuse d’interpretation et j’insiste bien sur le mot interpretation des theories de la relativité d’Einstein et plus generalement de la relativité en étudiant notamment les rapports entre l ‘espace, le temps, l etendue, le mouvant. Et en matière de philosophie,et ce qui caracterise bien celle ci, c est justement les interpretations des pensées et idées comme le soulignait Karl Marx;En ce titre, nul n’a monopole de Verité.Il existe des verités et non la Verité philosophique.Les interpretations de ces penseurs ont bien un coté partisan idélogiquement parlant et fondé sur des idées pré-conçues ou acquises au gré de leur circonstance de vie et de sagesse.Et sans me permettre trop de digression, les références d’autorité ne font guère preuves formelles.Elles ne sont que des idée-exemples pour illustrer une pensée donnée. Et comme les approches de ces penseurs passent pour etre des tentatives d explication et d’interpretations des pensées scientifiques, elles restent sujettes à caution.Du reste, les theories et les philosophies deterministes sont des approches qu ‘aujourd hui paraissent tout aussi plausibles que celles defendues par les partisants de leur refus.Elles font partie des « champs d’etude » de la philosophie au meme titre que le rationalisme ou le mysticisme. Et pour revenir sur des penseurs tels que j’ai enoncés à titre indicatif, Ralph Waldo Emerson n’est point un scientifique contrairement a Hawkings. Par ailleurs, si vous menez des recherches parallèles sur la notion d’unification et de comportement harmonieux des theories et principes ainsi que lois de la nature, vous noterez qu’elles ne dateraient point de la periode post galileenne contrairement à ce qu’on croit. Les premiers penseurs voire philosophes ne passent pas pour etre les philosophes grecs.L’on dit « l ‘on prette aux philosophes grecs », donc on leur attribue cet etat de fait passant pour admis;Sinon, les études philosophiques nous revelent les plausibilités des idées pas toutes mais un nombre impressionnant existant dans le sub continent indo pakistanais d’avant Socrates voire avant Virgile.Les penseurs d’orient ,indiens qu ils soient vediques ou brahmanes voire bouddhistes ont apparemment eu bien plus d influences sur les penseurs grecs qu’ils n’aient entre les grecs eux memes .Et une chose frappante est bien le parallèle et l’interpretation pratiquemment post moderniste que certains faisaient des comportements et mecanismes regissant tels des principles harmonieux au service d’une loi unique de la nature.Ils font ressortir une serie de pensées critiques tres proches voire identiques à celles des pensées de la physique post-relativiste.

Racisme Voilé ou Discrimination Subtile?

Posted in Humanities, Philosophy on April 15, 2010 by saiigain

A propos Je dirai “Oui Seigneur, pardonne à la France qui dit bien la voie droite et chemine par les sentiers obliques”. [ Hosties noires, Prière de paix (1948) ] Léopold Sédar Senghor

 De l’existence ou non des « Discriminations racistes » en France : « Racisme » fictif , réel ,ou apparent ?

La France, pays d’hospitalité légendaire et creuset des cultures d’ici et d’ailleurs, a toujours aspiré à traiter ses Enfants sur un même pied d’égalité. Qu’ils soient descendants d’anciens esclaves, qu’ils soient nés en France et nationalisés, qu’ils soient enrôlés dans l’armée française et contraints de mener batailles pour la libération de la patrie française, tous attendaient de leur cher pays un traitement juste et équitable sur le plan de la reconnaissance des actes honorifiques qu’ils ont posé ou sur le plan des droits humains ou encore sur la rétribution juste des sacrifices consentis de par le passé pour les préjudices subis au cours des siècles d’esclavage et de colonisation inhumaine. De leurs attentes nombreuses, très peu ont été satisfaites. Et celles qui ont été satisfaites sont perçues comme insuffisantes au regard des faits établis. Cela dit, de toutes les exigences, de toutes les sollicitudes formulées à l’endroit de l’État français,une ou deux exigence(s) font l’objet d’une réelle problématique dans la société française. Il s’agirait pour la patrie de De Gaule de « faire son mea culpa » devant l’Histoire des Nations jadis sous le joug colonial et esclavagiste. Ceci passerait pour être un véritable dilemme pour les pouvoirs publics et un cas de conscience pour la nation entière. Les conséquences d’un tel acte demeuraient imprévisibles tant à court terme que sur le long terme. L’autre problématique dont la société a toujours maille à prendre à bras le corps est celle relative à la « discrimination sournoise » et aux « actes de racisme » qui de temps à autre soit lors des match amicaux dans les stades ou dans les offices des administrations publiques font la une des quelques journaux de l’Hexagone. Ce phénomène ne touche pas que la métropole mais elle tend à s’étendre dans les possessions françaises d’Outre Mer.Le cas des Dom Tom ne date d’ailleurs pas d’aujourd’hui. La situation des Dom Tom est symptomatique du malaise crée par le poids de l’histoire coloniale et la difficile cohabitation des uns et des autres lorsque bourreaux et victimes se font face au jour le jour .Aussi, il parait essentiel de s’interroger sur les réelles causes,les causes dites profondes de tels phénomènes et voir en quoi l’acte d’incrimination portée à l’encontre des administrations étatiques mises en place considérées à tort ou à juste raison comme étant « racistes » ou « discriminatoires » à l’égard d’une certaine catégorie de classes sociales en France serait un acte défendable. Du fardeau de l’histoire La France de par son héritage colonial et esclavagiste a un passé historique très important. Elle fut l’un des acteurs importants de la colonisation des pays d’Afrique notamment occidentale,centrale et du nord,mais aussi des anciennes possessions et des territoires d’Outre Mer en plus de l’Asie (l’Indochine, le Vietnam dans une moindre mesure).Bref, en plus de l’esclavage, la colonisation et la néo colonisation qui suivit n’ont fait que grossir le patrimoine historique s’il en est une de la France. Et là ou le bas blesse, c’est là ou l’on s’attend le moins. En dépit des faits historiques toujours objets de discussions chez les historiens contemporains, la France n’arrive toujours pas à se faire une idée claire du poids d’un tel héritage qui sans doute ne contribue pas à rehausser son image de pays droit-hommiste qui a toujours respecté les droits fondamentaux de l’Homme quand bien même ils se trouvaient bafoués par l’État colonial ou esclavagiste. Voici véritablement là ou se situe tout l’enjeu du malaise social crée par le passé historique ; Que faire face aux actes regrettables du passé ? En admettre la culpabilité serait pechée contre les sacro-saints principes de la République et de l’Héritage historique des Français de « souche ». Vivre avec celà sous la conscience serait un fardeau difficile à supporter à la longue. Donc, que faire véritablement ? Si ce n’est présenter un semblant de reconnaissance des préjudices subis par les indigènes et leur accorder un semblant de rétributions pour les supplices endurés. Mais de tels actes suffisent ils vraiment pour effacer la dette de sang versé par les anciens colonisés ou esclaves. Suffisent ils de tels actes aussi courageux fussent ils pour permettre aux peuples qui ont subi toutes les humiliations du passé, du forçat,de la bagne, de l’indigenat de pouvoir enfin faire un deuil partiel de leurs morts, leurs ancêtres historiques ?La question reste ouverte,mais une chose est sure la France parait toujours névrotique quant à la position officielle à prendre face à son passé de colon et d’esclavagiste. Pas plus tard que ces dernières années, le Président de la République Française, Mr Nicolas Sarkozy, osait publiquement affirmer ce qui suit « Si on renie son histoire, on ne prépare pas son avenir ».L’on serait tenté de lui renvoyer la balle. Puisque jusqu’à ce moment précis, la France semble toujours persister dans son refus ou du moins dans son reniement de faire le mea culpa et les excuses souhaités à l’endroit des peuples jadis soumis à son joug. Avec une telle position , l’on se demanderait bien à quel avenir la France aspirerait -elle à se tourner. Car une nation qui n’arrive pas à se décider par rapport à son passé aussi encombrant voire dramatisant qu’il puisse paraître reste ou demeure tout simplement dans la hantise historique. Et c’est à juste titre que l’ex-premier ministre estonien Mart Laar affirmait qu’une «nation qui n’arrive pas à faire face à son passé, c’est comme un être humain qui souffre de névrose permanente ». De la Discrimination et du Racisme en Métropole ? La France en persistant dans son refus de reconnaître sa « culpabilité » historique dans l’asservissement des peuples fiers et de ses anciennes colonies ferait comprendre par là et indirectement qu’elle n’aurait rien à se reprocher ou aucun reproche à se faire et que l’esclavage tout aussi bien que la colonisation auraient eu des raisons valables historiquement. Une des logiques voire des conséquences indirectes d’une telle prise de position pourrait être interprétée dans l’imaginaire collectif et individuel comme étant un argument de plus en faveur des préjugés tant décriés selon lesquels les occidentaux,les « Blancs » pour ainsi dire seraient en sagesse,en science et en civilisation bien supérieurs ou meilleurs que les indigènes notablement les noirs auprès de qui ils auraient soi disant apporté la culture et la civilisation. Ce qui conduit à la problématique du racisme. Soutenir des préjugés ancrés dans les mentalités d’une autre époque selon lesquels les noirs et les autres notamment les blancs ne sont pas dignes d’être égaux devant la loi et devant Dieu relèverait de l’absurde en ce siècle des Lumières et des droits de l’homme et notamment dans la patrie charnière des Droits de l’Homme et du Citoyen que passe pour être la France . La problématique du racisme en France ne date pas de nos jours. On y fait mention dans les ouvrages littéraires francophones d’Afrique et d’ailleurs. L’on y parle notamment de politique de deux poids deux mesures. De la stigmatisation de certaines communautés bien ciblées notamment africaines ou maghrébines en passant par les moqueries et les dénigrements sournois voire des actes racistes purement et simplement jusqu’aux abus et mauvais traitements subis par les immigrés ou les résidents de l’Hexagone. A cela,il faudrait ajouter la politique néocolonialiste et esclavagiste qui semble perdurer en Outre Mer. Tout ceci parait entretenir les préjugés raciaux et les désirs inavouables de comportements racistes. L’on se plait à dire que la France n’est pas et ne tolérait aucunement un quelconque acte raciste sur son territoire. Cependant, l’actualité à elle seule délivre son lot quotidien de racisme stigmatisant les communautés à chaque fois qu’un acte crapuleux se produirait. Faisant et parfois à tort ressortir les appartenances sociales et ethniques des individus en cause dans le délit crapuleux. Les médias tout en informant des actes de racisme dans les lieux publics comme les stades en viennent parfois mais pas toujours à jouer le jeu des groupes d’individus jugés racistes à tort ou à juste raison. Donc affirmer qu’il n’y aurait pas d’actes de racisme c’est se mentir à soi même dans l’Hexagone. Par contre, reconnaître qu’il y a bien du racisme mais selon des cas isolés serait aussi inacceptable. Soutenir l’idée qu’il y a du racisme mais de degré moindre en Métropole ne serait pas compatible avec les révélations des sciences humaines notamment socio-anthropologiques et psychanalytiques. Ces sciences semblent exclure toute notion de degré de racisme dans une société. Il y a racisme ou il n’ y en a pas. C’est tout. Voilà à quoi s’en tenir. Selon le psychiatre et écrivain Frantz Fanon, « une société est raciste ou ne l’est pas. Il n’existe pas de degrés de racisme ». En clair, il n’existe pas d’échelons de racisme. Il n’ y a pas de thermomètre pour mesurer le degré de racisme qui touche ou affecte une communauté ou des individus qui subissent ou ressentent le fait. En somme,le « racisme apparent » dans l’Hexagone ne semble pas être chose banale pour ce qui paraissent en être les victimes. Et la plupart du temps, ces individus sont issus de quartiers populaires et de communautés déjà étiquetées notamment les noirs et les maghrébins. La discrimination n’étant pas que physique,mais elle est aussi intellectuelle et professionnelle. Sur les lieux d’embauche ou de travail, les exemples sont légions. Et comme le rappelait le sociologue Robert Castel « Si vous répondez à une demande d’emploi et que vous avez un nom à consonance maghrébine et que vous habitez dans un quartier dit difficile, vous avez cinq fois moins de chance d’être invité à un entretien d’embauche que si vous habitez Paris et que vous avez un nom bien français ».

Crise de l’Etat ou Crise dans l Etat?

Posted in Humanities, Philosophy on April 15, 2010 by saiigain

« Where Justice is denied, where poverty is enforced, where ignorance prevails and where anyone else is made to feel that society is an organized conspiracy to oppress,rob and degrade them,neither person nor property will be safe, » Frédérick Douglas

De l’Etat et du modèle social français : Dissensions,Réformes,Crises

Le compte à rebours déclenché?

 L’État français se prévaut d’être le chantre d’un nouvel ordre mondial. La patrie de De Gaule voudrait prendre le devant de la scène pour montrer l’exemple aux autres nations du monde. La France est partie prenante pour une série de reformes sur le plan économique,social, politique,judiciaire voire scientifique. L’ensemble de ses mesures qu’elle qualifie de majeures pour la société française et la bonne gestion des ressources et de la richesse du pays ambitionne d’apporter à la France le développement économique, le bien etre social, la compétitivité sur tous les plans sociaux, scientifiques et stratégiques. Mais ce que l’on constate sur le terrain ce que la réalité semble bien être d’une toute autre nature. L’ensemble des reformes en cours est en passe d’ébranler les valeurs ancestrales auxquelles les français ont toujours tenu à maintenir. Les Grâces,les bienfaits sociaux de l’État-providence se font de plus en plus rares. La crise actuelle enfonce le clou et fait craindre le spectre d’une « américanisation » de la France, une américanisation à la fois des mœurs mais aussi de la mentalité et du train de vie des individus ainsi que des institutions de la République. C’est bien la disparition de l’exception française qui semble se profiler à l’horizon. Comment en est on arrivé à ce stade ? Pourquoi de plus en plus de français ne se reconnaissent plus dans le modèle étatique tel que prôné par les administrations ? Que faut il comprendre des sondages qui ne cessent de décrédibiliser les administrations publiques et rendre les français plus que jamais désolidarisés du régime actuel et son mode de gestion du pays ? En d’autres termes, en quoi consiste le malaise social en France faisant craindre le spectre d’une transformation de l’État-Providence en France à l’État-Gendarme. Aussi, pour apporter notre part de réflexions à ce sujet, nous nous pencherons sur les grands chantiers en cours qui font craindre le pire aux habitants de la France et nous déterminerons pourquoi le désamour croissant entre la France et ses Enfants semble se prolonger inexorablement. De L’État et de ses Réformes Bien d’observateurs avisés de la scène politique française ne manqueraient certainement pas de souligner l’atmosphère tendu qui règne sur l’Hexagone. Pour certains, la France est en passe d’une « révolution sociale » ou du moins d’un semblant de révolution. A ce stade, rien n’indique un tel phénomène même s’il faut raison gardée. Tout comme la Révolution Française de 1789 qui a chamboulé l’histoire de la France, le spectre d’une « Révolution » similaire visant à établir un nouvel ordre social relèverait tout simplement du burlesque pour ne pas dire du ridicule. Et c’est faire preuve d’exagérations que dire que la révolution serait imminente en France. Il n’empêche que le pays connaît un certain nombre d’évènements qui si l’on ne prend garde risque de le faire basculer aux calendes grecs, à une époque au cours de laquelle l’État français s’illustrait dans ses dérives politiques,économiques ,hégémoniques et sociaux. Certains indicateurs sociaux et certaines reformes mal adaptées ou appropriées et dont les français ne semblent manifestement prêts à s’y faire actuellement font craindre l’ « explosion sociale».Pour beaucoup, ces reformes en cours dont nous détaillerons ultérieurement le contenu risquent d’engendrer un grand malaise social sans précédent dans l’histoire de la France, la crise socio-économique actuelle aidant. Ces reformes que d’aucuns qualifient de disproportionnées voire inadéquates font l’objet de débats houleux dans des journaux et sur des plateaux télévisés. Mais au final, qu’est ce donc ces reformes tant décriées ? Une série de reformes a été entreprise par l’administration actuelle pour faire changer les mentalités en France et faire avancer et progresser le pays sur tous plans possibles et de surcroit dans l’intérêt de la France et des français eux-mêmes selon le point de vue des partisans farouches des reformes en cours. Ces reformes en cours vont de l’immigration choisie ou sélective, en passant par celles des institutions de la République, de l’école et de l’université (l’éducation),de la santé, de la décentralisation du pouvoir et des nouveaux prérogatives octroyés aux préfets,bref du service public en général ainsi que de la Justice. L’éducation et la Justice semblent bien être les deux grands axes majeurs de la reforme après la politique de reforme envisagée pour l’économie. Pour ce qui est de la Justice, la suppression du Juge d’instruction constitue un sans précédent dans l’histoire judiciaire de la cinquième République. Elle fait la part belle à ce qui soutenait une « américanisation » de la justice française dans laquelle les délibérés du tribunal et les verdicts sont laissés à l’appréciation du Jury en présence en lieu et place du législateur judiciaire et la disparition de la fonction du juge d’instruction fait craindre le spectre d’une bataille rangée entre avocats de la partie civile et de la défense dans laquelle seule l’habileté à convaincre et à prouver l’innocence ou la culpabilité des justiciables serait déterminant. Pour ce qui est de l’éducation, les mesures en cours pour supprimer les postes d’enseignants à contrat indéterminé pour les remplacer par des contractuels ou des enseignants vacataires à contrat à durée souvent déterminée,la mise sous tutelle et les contraintes de la formation des enseignant-chercheurs, et enfin les mesures disproportionnées à l’égard des écoles primaires et secondaires visant à faire des maitres et maitresses à la fois des « nounous » et éducateurs en lieu et place des parents n’ayant pas les moyens de s’en occuper et la fouille systématique et le magnétisme des portails d’entrée dans la détection des métaux à usage dangereux achèvent de convaincre les plus sceptiques que la France perd ses repères d’antan tant prisés. Mais ce qui serait le plus à craindre est le social et l’économique. La reforme de la sécurité sociale, de la santé,et l’économie en rajoutent à l’angoisse déjà perceptible chez les sujets français. La situation économique assez grave( le pays traverse une récession économique significative) comme d’ailleurs la plupart des économies en Europe,la montée en puissance du chômage,la délocalisation des entreprises, les paradis fiscaux échappant à toute régulation creusant le fossé entre riches épargnant à l’étranger et les autres notablement les classes moyennes ou pauvres. A celà,il faudrait ajouter la situation dramatique des agriculteurs et éleveurs qui s’enfoncent de jour en jour dans la précarité totale incapables de faire face aux dépenses croissantes de l’entretien de la production agricole ou pastorale..Et enfin, la reforme du code de la route qui fait craindre le basculement vers la répression systématique ou pénale en cas d’infractions aussi mineures soient elles en lieu et place des campagnes de sensibilisation et d’éducation au code de la route et la « malmène » des groupes sociaux étiquetés ou ciblés par les agents de la police et de la sécurité intérieure notamment les jeunes qui craignent que la moindre appartenance à un groupe de jeunes potentiellement seulement violents ne les font trainer en justice pour appartenances à un groupe violent causant des troubles sur la place publique. L’on en vient à appliquer et condamner voire à déferrer des ados devant les tribunaux d’adultes pour des faits qui relèvent purement de la compétence de la Justice juvénile ou infantile. Par ailleurs, en matière de politique étrangère, la France revoit ses positionnements stratégiques en Afrique fermant les bases militaires nécessaires,revoyant les traités négociés sous le régime du paternalisme et de la Françafrique,ce qui fait dire à certains que l’administration actuelle semble perdre de vue les enjeux économiques,géostratégiques sur le terrain. Mais face à toutes ces situations, les français ont-ils vraiment d’autres choix ? Quelles autres options reste il ? Dissensions et Défiances populaires L’on se défait difficilement de ses vieilles habitudes. Ce à quoi les français étaient habitués et auxquels ils semblent encore tenir risquent de ne plus être à leur portée désormais. La crise aidant, c’est tout un processus qui est en train de se mettre en place bravant les sacro-saints principes des anciennes républiques et institutions et qui vise à modifier les fondements ainsi que les bases de la société tout court. La Reforme des administrations actuelles visent à jeter les bases d’un nouveau « Contrat Social » entre les tenants du pouvoir notamment financier et les salariés, entre l’État et la nation. Il s’agirait d’apporter un certain nombre de changements aux attributions et fonctions régaliennes qui étaient en cours sur le territoire français. L’on estime que tous ces changements brusques sont et demeurent une nécessité absolue. Et il faut le dire, le Président de la République,avec son parti UMP et avec l’appui d’une partie de la société française n’est pas prêt à céder d’un pouce. Il a un calendrier et un mandat à respecter. Il a fait des promesses à ses compatriotes qu’il se doit de tenir et d’honorer. Il a martelé que rien ne serait comme avant,ce qui il y a quelques années bien de français en étaient convaincus. Et véritablement, rien ne semble en effet plus comme avant. Ironie du sort ou pas, la précarité gagne du terrain en France, la dislocation familiale prend de l’ampleur, les jeunes en sont au chômage sans perspective d’avenir à la merci de boulots précaires à contrat déterminé, pire la répression semble être le lot des anti-reformistes contre lesquels toute une batterie d’agents de sécurité délimite les champs d’action. Les revendications sociales semblent lettre morte si elles ne reçoivent pas une fin de non recevoir ;Bref, rien ne semble aller en France et que dire de la présidence actuelle ? Dur dur d’être chef d’État en pareille circonstance surtout que la moindre décision maladroite risque d’avoir un impact grave sur une marge de la société. Et des décisions et promesses, çà n’en finit pas justement sans réalisation concrète. On pense que le bout du tunnel est encore loin, même très loin. En conclusion, s’il faut reconnaître à l’État les efforts substantiels qu’il met en œuvre pour juguler le manque d’adaptations des français et de la France aux nouvelles réalités socio-économiques. Il reste que les français à l’heure actuelle ne semblent pas eux aussi prêts à céder d’un pouce. Aussi, mieux vaudrait un compromis fut il précaire entre l’État,les entreprises, la société civile et le peuple tout entier. Car vouloir imposer coute que coute des reformes aussi avancées risque de conduire à des effets contre-productifs dommageables pour la société et pour les partenaires de la France.

Follow

Get every new post delivered to your Inbox.